| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ausgr.1 |  |-  G = { <. v , e >. | e C_ { x e. ~P v | ( # ` x ) = 2 } } | 
						
							| 2 | 1 | isausgr |  |-  ( ( V e. X /\ E e. Y ) -> ( V G E <-> E C_ { x e. ~P V | ( # ` x ) = 2 } ) ) | 
						
							| 3 |  | f1oi |  |-  ( _I |` E ) : E -1-1-onto-> E | 
						
							| 4 |  | dff1o5 |  |-  ( ( _I |` E ) : E -1-1-onto-> E <-> ( ( _I |` E ) : E -1-1-> E /\ ran ( _I |` E ) = E ) ) | 
						
							| 5 |  | f1ss |  |-  ( ( ( _I |` E ) : E -1-1-> E /\ E C_ { x e. ~P V | ( # ` x ) = 2 } ) -> ( _I |` E ) : E -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) | 
						
							| 6 |  | dmresi |  |-  dom ( _I |` E ) = E | 
						
							| 7 | 6 | eqcomi |  |-  E = dom ( _I |` E ) | 
						
							| 8 |  | f1eq2 |  |-  ( E = dom ( _I |` E ) -> ( ( _I |` E ) : E -1-1-> { x e. ~P V | ( # ` x ) = 2 } <-> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) | 
						
							| 9 | 7 8 | ax-mp |  |-  ( ( _I |` E ) : E -1-1-> { x e. ~P V | ( # ` x ) = 2 } <-> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) | 
						
							| 10 | 5 9 | sylib |  |-  ( ( ( _I |` E ) : E -1-1-> E /\ E C_ { x e. ~P V | ( # ` x ) = 2 } ) -> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) | 
						
							| 11 | 10 | ex |  |-  ( ( _I |` E ) : E -1-1-> E -> ( E C_ { x e. ~P V | ( # ` x ) = 2 } -> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) | 
						
							| 12 | 11 | a1d |  |-  ( ( _I |` E ) : E -1-1-> E -> ( ( V e. X /\ E e. Y ) -> ( E C_ { x e. ~P V | ( # ` x ) = 2 } -> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( _I |` E ) : E -1-1-> E /\ ran ( _I |` E ) = E ) -> ( ( V e. X /\ E e. Y ) -> ( E C_ { x e. ~P V | ( # ` x ) = 2 } -> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) ) | 
						
							| 14 | 4 13 | sylbi |  |-  ( ( _I |` E ) : E -1-1-onto-> E -> ( ( V e. X /\ E e. Y ) -> ( E C_ { x e. ~P V | ( # ` x ) = 2 } -> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) ) | 
						
							| 15 | 3 14 | ax-mp |  |-  ( ( V e. X /\ E e. Y ) -> ( E C_ { x e. ~P V | ( # ` x ) = 2 } -> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) | 
						
							| 16 |  | df-f |  |-  ( ( _I |` E ) : dom ( _I |` E ) --> { x e. ~P V | ( # ` x ) = 2 } <-> ( ( _I |` E ) Fn dom ( _I |` E ) /\ ran ( _I |` E ) C_ { x e. ~P V | ( # ` x ) = 2 } ) ) | 
						
							| 17 |  | rnresi |  |-  ran ( _I |` E ) = E | 
						
							| 18 | 17 | sseq1i |  |-  ( ran ( _I |` E ) C_ { x e. ~P V | ( # ` x ) = 2 } <-> E C_ { x e. ~P V | ( # ` x ) = 2 } ) | 
						
							| 19 | 18 | biimpi |  |-  ( ran ( _I |` E ) C_ { x e. ~P V | ( # ` x ) = 2 } -> E C_ { x e. ~P V | ( # ` x ) = 2 } ) | 
						
							| 20 | 19 | a1d |  |-  ( ran ( _I |` E ) C_ { x e. ~P V | ( # ` x ) = 2 } -> ( ( V e. X /\ E e. Y ) -> E C_ { x e. ~P V | ( # ` x ) = 2 } ) ) | 
						
							| 21 | 16 20 | simplbiim |  |-  ( ( _I |` E ) : dom ( _I |` E ) --> { x e. ~P V | ( # ` x ) = 2 } -> ( ( V e. X /\ E e. Y ) -> E C_ { x e. ~P V | ( # ` x ) = 2 } ) ) | 
						
							| 22 |  | f1f |  |-  ( ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } -> ( _I |` E ) : dom ( _I |` E ) --> { x e. ~P V | ( # ` x ) = 2 } ) | 
						
							| 23 | 21 22 | syl11 |  |-  ( ( V e. X /\ E e. Y ) -> ( ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } -> E C_ { x e. ~P V | ( # ` x ) = 2 } ) ) | 
						
							| 24 | 15 23 | impbid |  |-  ( ( V e. X /\ E e. Y ) -> ( E C_ { x e. ~P V | ( # ` x ) = 2 } <-> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) | 
						
							| 25 |  | resiexg |  |-  ( E e. Y -> ( _I |` E ) e. _V ) | 
						
							| 26 |  | opiedgfv |  |-  ( ( V e. X /\ ( _I |` E ) e. _V ) -> ( iEdg ` <. V , ( _I |` E ) >. ) = ( _I |` E ) ) | 
						
							| 27 | 25 26 | sylan2 |  |-  ( ( V e. X /\ E e. Y ) -> ( iEdg ` <. V , ( _I |` E ) >. ) = ( _I |` E ) ) | 
						
							| 28 | 27 | dmeqd |  |-  ( ( V e. X /\ E e. Y ) -> dom ( iEdg ` <. V , ( _I |` E ) >. ) = dom ( _I |` E ) ) | 
						
							| 29 |  | opvtxfv |  |-  ( ( V e. X /\ ( _I |` E ) e. _V ) -> ( Vtx ` <. V , ( _I |` E ) >. ) = V ) | 
						
							| 30 | 25 29 | sylan2 |  |-  ( ( V e. X /\ E e. Y ) -> ( Vtx ` <. V , ( _I |` E ) >. ) = V ) | 
						
							| 31 | 30 | pweqd |  |-  ( ( V e. X /\ E e. Y ) -> ~P ( Vtx ` <. V , ( _I |` E ) >. ) = ~P V ) | 
						
							| 32 | 31 | rabeqdv |  |-  ( ( V e. X /\ E e. Y ) -> { x e. ~P ( Vtx ` <. V , ( _I |` E ) >. ) | ( # ` x ) = 2 } = { x e. ~P V | ( # ` x ) = 2 } ) | 
						
							| 33 | 27 28 32 | f1eq123d |  |-  ( ( V e. X /\ E e. Y ) -> ( ( iEdg ` <. V , ( _I |` E ) >. ) : dom ( iEdg ` <. V , ( _I |` E ) >. ) -1-1-> { x e. ~P ( Vtx ` <. V , ( _I |` E ) >. ) | ( # ` x ) = 2 } <-> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) | 
						
							| 34 | 24 33 | bitr4d |  |-  ( ( V e. X /\ E e. Y ) -> ( E C_ { x e. ~P V | ( # ` x ) = 2 } <-> ( iEdg ` <. V , ( _I |` E ) >. ) : dom ( iEdg ` <. V , ( _I |` E ) >. ) -1-1-> { x e. ~P ( Vtx ` <. V , ( _I |` E ) >. ) | ( # ` x ) = 2 } ) ) | 
						
							| 35 |  | opex |  |-  <. V , ( _I |` E ) >. e. _V | 
						
							| 36 |  | eqid |  |-  ( Vtx ` <. V , ( _I |` E ) >. ) = ( Vtx ` <. V , ( _I |` E ) >. ) | 
						
							| 37 |  | eqid |  |-  ( iEdg ` <. V , ( _I |` E ) >. ) = ( iEdg ` <. V , ( _I |` E ) >. ) | 
						
							| 38 | 36 37 | isusgrs |  |-  ( <. V , ( _I |` E ) >. e. _V -> ( <. V , ( _I |` E ) >. e. USGraph <-> ( iEdg ` <. V , ( _I |` E ) >. ) : dom ( iEdg ` <. V , ( _I |` E ) >. ) -1-1-> { x e. ~P ( Vtx ` <. V , ( _I |` E ) >. ) | ( # ` x ) = 2 } ) ) | 
						
							| 39 | 35 38 | ax-mp |  |-  ( <. V , ( _I |` E ) >. e. USGraph <-> ( iEdg ` <. V , ( _I |` E ) >. ) : dom ( iEdg ` <. V , ( _I |` E ) >. ) -1-1-> { x e. ~P ( Vtx ` <. V , ( _I |` E ) >. ) | ( # ` x ) = 2 } ) | 
						
							| 40 | 39 | bicomi |  |-  ( ( iEdg ` <. V , ( _I |` E ) >. ) : dom ( iEdg ` <. V , ( _I |` E ) >. ) -1-1-> { x e. ~P ( Vtx ` <. V , ( _I |` E ) >. ) | ( # ` x ) = 2 } <-> <. V , ( _I |` E ) >. e. USGraph ) | 
						
							| 41 | 40 | a1i |  |-  ( ( V e. X /\ E e. Y ) -> ( ( iEdg ` <. V , ( _I |` E ) >. ) : dom ( iEdg ` <. V , ( _I |` E ) >. ) -1-1-> { x e. ~P ( Vtx ` <. V , ( _I |` E ) >. ) | ( # ` x ) = 2 } <-> <. V , ( _I |` E ) >. e. USGraph ) ) | 
						
							| 42 | 2 34 41 | 3bitrd |  |-  ( ( V e. X /\ E e. Y ) -> ( V G E <-> <. V , ( _I |` E ) >. e. USGraph ) ) |