| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ausgr.1 |  |-  G = { <. v , e >. | e C_ { x e. ~P v | ( # ` x ) = 2 } } | 
						
							| 2 |  | usgredgss |  |-  ( H e. USGraph -> ( Edg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) | 
						
							| 3 |  | fvex |  |-  ( Vtx ` H ) e. _V | 
						
							| 4 |  | fvex |  |-  ( Edg ` H ) e. _V | 
						
							| 5 | 1 | isausgr |  |-  ( ( ( Vtx ` H ) e. _V /\ ( Edg ` H ) e. _V ) -> ( ( Vtx ` H ) G ( Edg ` H ) <-> ( Edg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) | 
						
							| 6 | 3 4 5 | mp2an |  |-  ( ( Vtx ` H ) G ( Edg ` H ) <-> ( Edg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) | 
						
							| 7 | 2 6 | sylibr |  |-  ( H e. USGraph -> ( Vtx ` H ) G ( Edg ` H ) ) |