| Step |
Hyp |
Ref |
Expression |
| 1 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
| 2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 3 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 4 |
2 3
|
usgrfs |
|- ( G e. USGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
| 5 |
|
f1f |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
| 6 |
|
frn |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } -> ran ( iEdg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
| 7 |
4 5 6
|
3syl |
|- ( G e. USGraph -> ran ( iEdg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |
| 8 |
1 7
|
eqsstrid |
|- ( G e. USGraph -> ( Edg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } ) |