Metamath Proof Explorer


Theorem isusgrop

Description: The property of being an undirected simple graph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of Bollobas p. 1. (Contributed by AV, 30-Nov-2020)

Ref Expression
Assertion isusgrop VWEXVEUSGraphE:domE1-1p𝒫V|p=2

Proof

Step Hyp Ref Expression
1 opex VEV
2 eqid VtxVE=VtxVE
3 eqid iEdgVE=iEdgVE
4 2 3 isusgrs VEVVEUSGraphiEdgVE:domiEdgVE1-1p𝒫VtxVE|p=2
5 1 4 mp1i VWEXVEUSGraphiEdgVE:domiEdgVE1-1p𝒫VtxVE|p=2
6 opiedgfv VWEXiEdgVE=E
7 6 dmeqd VWEXdomiEdgVE=domE
8 opvtxfv VWEXVtxVE=V
9 8 pweqd VWEX𝒫VtxVE=𝒫V
10 9 rabeqdv VWEXp𝒫VtxVE|p=2=p𝒫V|p=2
11 6 7 10 f1eq123d VWEXiEdgVE:domiEdgVE1-1p𝒫VtxVE|p=2E:domE1-1p𝒫V|p=2
12 5 11 bitrd VWEXVEUSGraphE:domE1-1p𝒫V|p=2