Metamath Proof Explorer


Theorem opfusgr

Description: A finite simple graph represented as ordered pair. (Contributed by AV, 23-Oct-2020)

Ref Expression
Assertion opfusgr V X E Y V E FinUSGraph V E USGraph V Fin

Proof

Step Hyp Ref Expression
1 eqid Vtx V E = Vtx V E
2 1 isfusgr V E FinUSGraph V E USGraph Vtx V E Fin
3 opvtxfv V X E Y Vtx V E = V
4 3 eleq1d V X E Y Vtx V E Fin V Fin
5 4 anbi2d V X E Y V E USGraph Vtx V E Fin V E USGraph V Fin
6 2 5 syl5bb V X E Y V E FinUSGraph V E USGraph V Fin