Database
GRAPH THEORY
Undirected graphs
Finite undirected simple graphs
opfusgr
Next ⟩
usgredgffibi
Metamath Proof Explorer
Ascii
Unicode
Theorem
opfusgr
Description:
A finite simple graph represented as ordered pair.
(Contributed by
AV
, 23-Oct-2020)
Ref
Expression
Assertion
opfusgr
⊢
V
∈
X
∧
E
∈
Y
→
V
E
∈
FinUSGraph
↔
V
E
∈
USGraph
∧
V
∈
Fin
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Vtx
⁡
V
E
=
Vtx
⁡
V
E
2
1
isfusgr
⊢
V
E
∈
FinUSGraph
↔
V
E
∈
USGraph
∧
Vtx
⁡
V
E
∈
Fin
3
opvtxfv
⊢
V
∈
X
∧
E
∈
Y
→
Vtx
⁡
V
E
=
V
4
3
eleq1d
⊢
V
∈
X
∧
E
∈
Y
→
Vtx
⁡
V
E
∈
Fin
↔
V
∈
Fin
5
4
anbi2d
⊢
V
∈
X
∧
E
∈
Y
→
V
E
∈
USGraph
∧
Vtx
⁡
V
E
∈
Fin
↔
V
E
∈
USGraph
∧
V
∈
Fin
6
2
5
syl5bb
⊢
V
∈
X
∧
E
∈
Y
→
V
E
∈
FinUSGraph
↔
V
E
∈
USGraph
∧
V
∈
Fin