Metamath Proof Explorer


Theorem opfusgr

Description: A finite simple graph represented as ordered pair. (Contributed by AV, 23-Oct-2020)

Ref Expression
Assertion opfusgr
|- ( ( V e. X /\ E e. Y ) -> ( <. V , E >. e. FinUSGraph <-> ( <. V , E >. e. USGraph /\ V e. Fin ) ) )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( Vtx ` <. V , E >. ) = ( Vtx ` <. V , E >. )
2 1 isfusgr
 |-  ( <. V , E >. e. FinUSGraph <-> ( <. V , E >. e. USGraph /\ ( Vtx ` <. V , E >. ) e. Fin ) )
3 opvtxfv
 |-  ( ( V e. X /\ E e. Y ) -> ( Vtx ` <. V , E >. ) = V )
4 3 eleq1d
 |-  ( ( V e. X /\ E e. Y ) -> ( ( Vtx ` <. V , E >. ) e. Fin <-> V e. Fin ) )
5 4 anbi2d
 |-  ( ( V e. X /\ E e. Y ) -> ( ( <. V , E >. e. USGraph /\ ( Vtx ` <. V , E >. ) e. Fin ) <-> ( <. V , E >. e. USGraph /\ V e. Fin ) ) )
6 2 5 syl5bb
 |-  ( ( V e. X /\ E e. Y ) -> ( <. V , E >. e. FinUSGraph <-> ( <. V , E >. e. USGraph /\ V e. Fin ) ) )