Description: Function value for a member of a set exponentiation. (Contributed by Glauco Siliprandi, 21-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmap.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| fvmap.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| fvmap.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 ↑m 𝐵 ) ) | ||
| fvmap.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) | ||
| Assertion | fvmap | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmap.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | fvmap.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 3 | fvmap.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 ↑m 𝐵 ) ) | |
| 4 | fvmap.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) | |
| 5 | id | ⊢ ( 𝜑 → 𝜑 ) | |
| 6 | elmapg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐹 ∈ ( 𝐴 ↑m 𝐵 ) ↔ 𝐹 : 𝐵 ⟶ 𝐴 ) ) | |
| 7 | 1 2 6 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐴 ↑m 𝐵 ) ↔ 𝐹 : 𝐵 ⟶ 𝐴 ) ) |
| 8 | 3 7 | mpbid | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐴 ) |
| 9 | 8 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐹 ‘ 𝐶 ) ∈ 𝐴 ) |
| 10 | 5 4 9 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ 𝐴 ) |