Description: Function value for a member of a set exponentiation. (Contributed by Glauco Siliprandi, 21-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmap.a | |- ( ph -> A e. V ) |
|
| fvmap.b | |- ( ph -> B e. W ) |
||
| fvmap.f | |- ( ph -> F e. ( A ^m B ) ) |
||
| fvmap.c | |- ( ph -> C e. B ) |
||
| Assertion | fvmap | |- ( ph -> ( F ` C ) e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmap.a | |- ( ph -> A e. V ) |
|
| 2 | fvmap.b | |- ( ph -> B e. W ) |
|
| 3 | fvmap.f | |- ( ph -> F e. ( A ^m B ) ) |
|
| 4 | fvmap.c | |- ( ph -> C e. B ) |
|
| 5 | id | |- ( ph -> ph ) |
|
| 6 | elmapg | |- ( ( A e. V /\ B e. W ) -> ( F e. ( A ^m B ) <-> F : B --> A ) ) |
|
| 7 | 1 2 6 | syl2anc | |- ( ph -> ( F e. ( A ^m B ) <-> F : B --> A ) ) |
| 8 | 3 7 | mpbid | |- ( ph -> F : B --> A ) |
| 9 | 8 | ffvelcdmda | |- ( ( ph /\ C e. B ) -> ( F ` C ) e. A ) |
| 10 | 5 4 9 | syl2anc | |- ( ph -> ( F ` C ) e. A ) |