| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzosplitsn |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ ( 𝐵 + 1 ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ) |
| 2 |
1
|
eleq2d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐶 ∈ ( 𝐴 ..^ ( 𝐵 + 1 ) ) ↔ 𝐶 ∈ ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ) ) |
| 3 |
|
elun |
⊢ ( 𝐶 ∈ ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ↔ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝐶 ∈ { 𝐵 } ) ) |
| 4 |
|
elsn2g |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐶 ∈ { 𝐵 } ↔ 𝐶 = 𝐵 ) ) |
| 5 |
4
|
orbi2d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝐶 ∈ { 𝐵 } ) ↔ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝐶 = 𝐵 ) ) ) |
| 6 |
3 5
|
bitrid |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐶 ∈ ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ↔ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝐶 = 𝐵 ) ) ) |
| 7 |
2 6
|
bitrd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐶 ∈ ( 𝐴 ..^ ( 𝐵 + 1 ) ) ↔ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝐶 = 𝐵 ) ) ) |