| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gcdcom |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 gcd 𝐶 ) = ( 𝐶 gcd 𝐵 ) ) |
| 2 |
1
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 gcd 𝐶 ) = ( 𝐶 gcd 𝐵 ) ) |
| 3 |
2
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 gcd ( 𝐵 gcd 𝐶 ) ) = ( 𝐴 gcd ( 𝐶 gcd 𝐵 ) ) ) |
| 4 |
|
gcdass |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = ( 𝐴 gcd ( 𝐵 gcd 𝐶 ) ) ) |
| 5 |
|
gcdass |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐶 ) gcd 𝐵 ) = ( 𝐴 gcd ( 𝐶 gcd 𝐵 ) ) ) |
| 6 |
5
|
3com23 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 gcd 𝐶 ) gcd 𝐵 ) = ( 𝐴 gcd ( 𝐶 gcd 𝐵 ) ) ) |
| 7 |
3 4 6
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = ( ( 𝐴 gcd 𝐶 ) gcd 𝐵 ) ) |