| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gcdass |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) gcd 𝐵 ) = ( 𝐴 gcd ( 𝐵 gcd 𝐵 ) ) ) |
| 2 |
1
|
3anidm23 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) gcd 𝐵 ) = ( 𝐴 gcd ( 𝐵 gcd 𝐵 ) ) ) |
| 3 |
|
gcdid |
⊢ ( 𝐵 ∈ ℤ → ( 𝐵 gcd 𝐵 ) = ( abs ‘ 𝐵 ) ) |
| 4 |
3
|
oveq2d |
⊢ ( 𝐵 ∈ ℤ → ( 𝐴 gcd ( 𝐵 gcd 𝐵 ) ) = ( 𝐴 gcd ( abs ‘ 𝐵 ) ) ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd ( 𝐵 gcd 𝐵 ) ) = ( 𝐴 gcd ( abs ‘ 𝐵 ) ) ) |
| 6 |
|
gcdabs2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd ( abs ‘ 𝐵 ) ) = ( 𝐴 gcd 𝐵 ) ) |
| 7 |
2 5 6
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) gcd 𝐵 ) = ( 𝐴 gcd 𝐵 ) ) |