Step |
Hyp |
Ref |
Expression |
1 |
|
gcdass |
|- ( ( A e. ZZ /\ B e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) gcd B ) = ( A gcd ( B gcd B ) ) ) |
2 |
1
|
3anidm23 |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) gcd B ) = ( A gcd ( B gcd B ) ) ) |
3 |
|
gcdid |
|- ( B e. ZZ -> ( B gcd B ) = ( abs ` B ) ) |
4 |
3
|
oveq2d |
|- ( B e. ZZ -> ( A gcd ( B gcd B ) ) = ( A gcd ( abs ` B ) ) ) |
5 |
4
|
adantl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd ( B gcd B ) ) = ( A gcd ( abs ` B ) ) ) |
6 |
|
gcdabs2 |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd ( abs ` B ) ) = ( A gcd B ) ) |
7 |
2 5 6
|
3eqtrd |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) gcd B ) = ( A gcd B ) ) |