Metamath Proof Explorer


Theorem gcdabsorb

Description: Absorption law for gcd. (Contributed by Scott Fenton, 8-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion gcdabsorb ABAgcdBgcdB=AgcdB

Proof

Step Hyp Ref Expression
1 gcdass ABBAgcdBgcdB=AgcdBgcdB
2 1 3anidm23 ABAgcdBgcdB=AgcdBgcdB
3 gcdid BBgcdB=B
4 3 oveq2d BAgcdBgcdB=AgcdB
5 4 adantl ABAgcdBgcdB=AgcdB
6 gcdabs2 ABAgcdB=AgcdB
7 2 5 6 3eqtrd ABAgcdBgcdB=AgcdB