Metamath Proof Explorer


Theorem gpgiedgdmel

Description: An index of edges of the generalized Petersen graph GPG(N,K). (Contributed by AV, 2-Nov-2025)

Ref Expression
Hypotheses gpgvtxel.i 𝐼 = ( 0 ..^ 𝑁 )
gpgvtxel.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
gpgvtxel.g 𝐺 = ( 𝑁 gPetersenGr 𝐾 )
Assertion gpgiedgdmel ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑥𝐼 ( 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑋 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) ) )

Proof

Step Hyp Ref Expression
1 gpgvtxel.i 𝐼 = ( 0 ..^ 𝑁 )
2 gpgvtxel.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
3 gpgvtxel.g 𝐺 = ( 𝑁 gPetersenGr 𝐾 )
4 3 fveq2i ( iEdg ‘ 𝐺 ) = ( iEdg ‘ ( 𝑁 gPetersenGr 𝐾 ) )
5 2 1 gpgiedg ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( iEdg ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ) )
6 4 5 eqtrid ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( iEdg ‘ 𝐺 ) = ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ) )
7 6 dmeqd ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → dom ( iEdg ‘ 𝐺 ) = dom ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ) )
8 7 eleq2d ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ↔ 𝑋 ∈ dom ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ) ) )
9 dmresi dom ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ) = { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) }
10 9 a1i ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → dom ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ) = { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } )
11 10 eleq2d ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( 𝑋 ∈ dom ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ) ↔ 𝑋 ∈ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ) )
12 eqeq1 ( 𝑒 = 𝑋 → ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ↔ 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ) )
13 eqeq1 ( 𝑒 = 𝑋 → ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ↔ 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ) )
14 eqeq1 ( 𝑒 = 𝑋 → ( 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ↔ 𝑋 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) )
15 12 13 14 3orbi123d ( 𝑒 = 𝑋 → ( ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) ↔ ( 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑋 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) ) )
16 15 rexbidv ( 𝑒 = 𝑋 → ( ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) ↔ ∃ 𝑥𝐼 ( 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑋 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) ) )
17 16 elrab ( 𝑋 ∈ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ↔ ( 𝑋 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∧ ∃ 𝑥𝐼 ( 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑋 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) ) )
18 1 2 gpgiedgdmellem ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( ∃ 𝑥𝐼 ( 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑋 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) → 𝑋 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ) )
19 18 pm4.71rd ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( ∃ 𝑥𝐼 ( 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑋 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) ↔ ( 𝑋 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∧ ∃ 𝑥𝐼 ( 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑋 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) ) ) )
20 17 19 bitr4id ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( 𝑋 ∈ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ↔ ∃ 𝑥𝐼 ( 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑋 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) ) )
21 8 11 20 3bitrd ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑥𝐼 ( 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑋 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑋 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) ) )