Metamath Proof Explorer


Theorem gpgvtx

Description: The vertices of the generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025)

Ref Expression
Hypotheses gpgov.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
gpgov.i 𝐼 = ( 0 ..^ 𝑁 )
Assertion gpgvtx ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = ( { 0 , 1 } × 𝐼 ) )

Proof

Step Hyp Ref Expression
1 gpgov.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
2 gpgov.i 𝐼 = ( 0 ..^ 𝑁 )
3 1 2 gpgov ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( 𝑁 gPetersenGr 𝐾 ) = { ⟨ ( Base ‘ ndx ) , ( { 0 , 1 } × 𝐼 ) ⟩ , ⟨ ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ) ⟩ } )
4 3 fveq2d ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = ( Vtx ‘ { ⟨ ( Base ‘ ndx ) , ( { 0 , 1 } × 𝐼 ) ⟩ , ⟨ ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ) ⟩ } ) )
5 prex { 0 , 1 } ∈ V
6 2 ovexi 𝐼 ∈ V
7 5 6 xpex ( { 0 , 1 } × 𝐼 ) ∈ V
8 eqid { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } = { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) }
9 5 a1i ( 𝐼 = ( 0 ..^ 𝑁 ) → { 0 , 1 } ∈ V )
10 ovexd ( 𝐼 = ( 0 ..^ 𝑁 ) → ( 0 ..^ 𝑁 ) ∈ V )
11 2 10 eqeltrid ( 𝐼 = ( 0 ..^ 𝑁 ) → 𝐼 ∈ V )
12 9 11 xpexd ( 𝐼 = ( 0 ..^ 𝑁 ) → ( { 0 , 1 } × 𝐼 ) ∈ V )
13 12 pwexd ( 𝐼 = ( 0 ..^ 𝑁 ) → 𝒫 ( { 0 , 1 } × 𝐼 ) ∈ V )
14 8 13 rabexd ( 𝐼 = ( 0 ..^ 𝑁 ) → { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ∈ V )
15 14 resiexd ( 𝐼 = ( 0 ..^ 𝑁 ) → ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ) ∈ V )
16 2 15 ax-mp ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ) ∈ V
17 7 16 pm3.2i ( ( { 0 , 1 } × 𝐼 ) ∈ V ∧ ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ) ∈ V )
18 eqid { ⟨ ( Base ‘ ndx ) , ( { 0 , 1 } × 𝐼 ) ⟩ , ⟨ ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ) ⟩ } = { ⟨ ( Base ‘ ndx ) , ( { 0 , 1 } × 𝐼 ) ⟩ , ⟨ ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ) ⟩ }
19 18 struct2grvtx ( ( ( { 0 , 1 } × 𝐼 ) ∈ V ∧ ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ) ∈ V ) → ( Vtx ‘ { ⟨ ( Base ‘ ndx ) , ( { 0 , 1 } × 𝐼 ) ⟩ , ⟨ ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ) ⟩ } ) = ( { 0 , 1 } × 𝐼 ) )
20 17 19 mp1i ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( Vtx ‘ { ⟨ ( Base ‘ ndx ) , ( { 0 , 1 } × 𝐼 ) ⟩ , ⟨ ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥𝐼 ( 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) ⟩ } ∨ 𝑒 = { ⟨ 0 , 𝑥 ⟩ , ⟨ 1 , 𝑥 ⟩ } ∨ 𝑒 = { ⟨ 1 , 𝑥 ⟩ , ⟨ 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) ⟩ } ) } ) ⟩ } ) = ( { 0 , 1 } × 𝐼 ) )
21 4 20 eqtrd ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = ( { 0 , 1 } × 𝐼 ) )