Step |
Hyp |
Ref |
Expression |
1 |
|
gpgov.j |
⊢ 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
2 |
|
gpgov.i |
⊢ 𝐼 = ( 0 ..^ 𝑁 ) |
3 |
1 2
|
gpgov |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽 ) → ( 𝑁 gPetersenGr 𝐾 ) = { 〈 ( Base ‘ ndx ) , ( { 0 , 1 } × 𝐼 ) 〉 , 〈 ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥 ∈ 𝐼 ( 𝑒 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝑒 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) } ) 〉 } ) |
4 |
3
|
fveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽 ) → ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = ( Vtx ‘ { 〈 ( Base ‘ ndx ) , ( { 0 , 1 } × 𝐼 ) 〉 , 〈 ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥 ∈ 𝐼 ( 𝑒 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝑒 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) } ) 〉 } ) ) |
5 |
|
prex |
⊢ { 0 , 1 } ∈ V |
6 |
2
|
ovexi |
⊢ 𝐼 ∈ V |
7 |
5 6
|
xpex |
⊢ ( { 0 , 1 } × 𝐼 ) ∈ V |
8 |
|
eqid |
⊢ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥 ∈ 𝐼 ( 𝑒 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝑒 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) } = { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥 ∈ 𝐼 ( 𝑒 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝑒 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) } |
9 |
5
|
a1i |
⊢ ( 𝐼 = ( 0 ..^ 𝑁 ) → { 0 , 1 } ∈ V ) |
10 |
|
ovexd |
⊢ ( 𝐼 = ( 0 ..^ 𝑁 ) → ( 0 ..^ 𝑁 ) ∈ V ) |
11 |
2 10
|
eqeltrid |
⊢ ( 𝐼 = ( 0 ..^ 𝑁 ) → 𝐼 ∈ V ) |
12 |
9 11
|
xpexd |
⊢ ( 𝐼 = ( 0 ..^ 𝑁 ) → ( { 0 , 1 } × 𝐼 ) ∈ V ) |
13 |
12
|
pwexd |
⊢ ( 𝐼 = ( 0 ..^ 𝑁 ) → 𝒫 ( { 0 , 1 } × 𝐼 ) ∈ V ) |
14 |
8 13
|
rabexd |
⊢ ( 𝐼 = ( 0 ..^ 𝑁 ) → { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥 ∈ 𝐼 ( 𝑒 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝑒 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) } ∈ V ) |
15 |
14
|
resiexd |
⊢ ( 𝐼 = ( 0 ..^ 𝑁 ) → ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥 ∈ 𝐼 ( 𝑒 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝑒 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) } ) ∈ V ) |
16 |
2 15
|
ax-mp |
⊢ ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥 ∈ 𝐼 ( 𝑒 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝑒 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) } ) ∈ V |
17 |
7 16
|
pm3.2i |
⊢ ( ( { 0 , 1 } × 𝐼 ) ∈ V ∧ ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥 ∈ 𝐼 ( 𝑒 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝑒 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) } ) ∈ V ) |
18 |
|
eqid |
⊢ { 〈 ( Base ‘ ndx ) , ( { 0 , 1 } × 𝐼 ) 〉 , 〈 ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥 ∈ 𝐼 ( 𝑒 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝑒 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) } ) 〉 } = { 〈 ( Base ‘ ndx ) , ( { 0 , 1 } × 𝐼 ) 〉 , 〈 ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥 ∈ 𝐼 ( 𝑒 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝑒 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) } ) 〉 } |
19 |
18
|
struct2grvtx |
⊢ ( ( ( { 0 , 1 } × 𝐼 ) ∈ V ∧ ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥 ∈ 𝐼 ( 𝑒 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝑒 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) } ) ∈ V ) → ( Vtx ‘ { 〈 ( Base ‘ ndx ) , ( { 0 , 1 } × 𝐼 ) 〉 , 〈 ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥 ∈ 𝐼 ( 𝑒 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝑒 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) } ) 〉 } ) = ( { 0 , 1 } × 𝐼 ) ) |
20 |
17 19
|
mp1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽 ) → ( Vtx ‘ { 〈 ( Base ‘ ndx ) , ( { 0 , 1 } × 𝐼 ) 〉 , 〈 ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( { 0 , 1 } × 𝐼 ) ∣ ∃ 𝑥 ∈ 𝐼 ( 𝑒 = { 〈 0 , 𝑥 〉 , 〈 0 , ( ( 𝑥 + 1 ) mod 𝑁 ) 〉 } ∨ 𝑒 = { 〈 0 , 𝑥 〉 , 〈 1 , 𝑥 〉 } ∨ 𝑒 = { 〈 1 , 𝑥 〉 , 〈 1 , ( ( 𝑥 + 𝐾 ) mod 𝑁 ) 〉 } ) } ) 〉 } ) = ( { 0 , 1 } × 𝐼 ) ) |
21 |
4 20
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽 ) → ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = ( { 0 , 1 } × 𝐼 ) ) |