Metamath Proof Explorer


Theorem grlicsymb

Description: Graph local isomorphism is symmetric in both directions for hypergraphs. (Contributed by AV, 9-Jun-2025)

Ref Expression
Assertion grlicsymb ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ) → ( 𝐴𝑙𝑔𝑟 𝐵𝐵𝑙𝑔𝑟 𝐴 ) )

Proof

Step Hyp Ref Expression
1 grlicsym ( 𝐴 ∈ UHGraph → ( 𝐴𝑙𝑔𝑟 𝐵𝐵𝑙𝑔𝑟 𝐴 ) )
2 grlicsym ( 𝐵 ∈ UHGraph → ( 𝐵𝑙𝑔𝑟 𝐴𝐴𝑙𝑔𝑟 𝐵 ) )
3 1 2 anbiim ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ) → ( 𝐴𝑙𝑔𝑟 𝐵𝐵𝑙𝑔𝑟 𝐴 ) )