Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) |
3 |
1 2
|
grilcbri |
⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝑆 → ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ) |
4 |
|
grlicrcl |
⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝑆 → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ) |
5 |
|
vex |
⊢ 𝑓 ∈ V |
6 |
|
cnvexg |
⊢ ( 𝑓 ∈ V → ◡ 𝑓 ∈ V ) |
7 |
5 6
|
mp1i |
⊢ ( ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ∧ 𝐺 ∈ UHGraph ) → ◡ 𝑓 ∈ V ) |
8 |
|
f1ocnv |
⊢ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) → ◡ 𝑓 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ) |
9 |
8
|
ad2antrr |
⊢ ( ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ∧ 𝐺 ∈ UHGraph ) → ◡ 𝑓 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ) |
10 |
|
f1ocnvdm |
⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ) → ( ◡ 𝑓 ‘ 𝑤 ) ∈ ( Vtx ‘ 𝐺 ) ) |
11 |
10
|
3adant3 |
⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ∧ 𝐺 ∈ UHGraph ) → ( ◡ 𝑓 ‘ 𝑤 ) ∈ ( Vtx ‘ 𝐺 ) ) |
12 |
|
oveq2 |
⊢ ( 𝑣 = ( ◡ 𝑓 ‘ 𝑤 ) → ( 𝐺 ClNeighbVtx 𝑣 ) = ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝑣 = ( ◡ 𝑓 ‘ 𝑤 ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) = ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) |
14 |
|
fveq2 |
⊢ ( 𝑣 = ( ◡ 𝑓 ‘ 𝑤 ) → ( 𝑓 ‘ 𝑣 ) = ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝑣 = ( ◡ 𝑓 ‘ 𝑤 ) → ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) = ( 𝑆 ClNeighbVtx ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑣 = ( ◡ 𝑓 ‘ 𝑤 ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) = ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) |
17 |
13 16
|
breq12d |
⊢ ( 𝑣 = ( ◡ 𝑓 ‘ 𝑤 ) → ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ↔ ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) ) |
18 |
17
|
rspcv |
⊢ ( ( ◡ 𝑓 ‘ 𝑤 ) ∈ ( Vtx ‘ 𝐺 ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) ) |
19 |
11 18
|
syl |
⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ∧ 𝐺 ∈ UHGraph ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) ) |
20 |
|
f1ocnvfv2 |
⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ) → ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) = 𝑤 ) |
21 |
20
|
3adant3 |
⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ∧ 𝐺 ∈ UHGraph ) → ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) = 𝑤 ) |
22 |
21
|
oveq2d |
⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ∧ 𝐺 ∈ UHGraph ) → ( 𝑆 ClNeighbVtx ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) ) = ( 𝑆 ClNeighbVtx 𝑤 ) ) |
23 |
22
|
oveq2d |
⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ∧ 𝐺 ∈ UHGraph ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) = ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ) |
24 |
23
|
breq2d |
⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ∧ 𝐺 ∈ UHGraph ) → ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ↔ ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ) ) |
25 |
|
simp3 |
⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ∧ 𝐺 ∈ UHGraph ) → 𝐺 ∈ UHGraph ) |
26 |
1
|
clnbgrssvtx |
⊢ ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ⊆ ( Vtx ‘ 𝐺 ) |
27 |
1
|
isubgruhgr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ⊆ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ∈ UHGraph ) |
28 |
25 26 27
|
sylancl |
⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ∧ 𝐺 ∈ UHGraph ) → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ∈ UHGraph ) |
29 |
|
gricsym |
⊢ ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ∈ UHGraph → ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) |
30 |
28 29
|
syl |
⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ∧ 𝐺 ∈ UHGraph ) → ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) |
31 |
24 30
|
sylbid |
⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ∧ 𝐺 ∈ UHGraph ) → ( ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) |
32 |
19 31
|
syld |
⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ∧ 𝐺 ∈ UHGraph ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) |
33 |
32
|
3exp |
⊢ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) → ( 𝑤 ∈ ( Vtx ‘ 𝑆 ) → ( 𝐺 ∈ UHGraph → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) ) ) |
34 |
33
|
com24 |
⊢ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) → ( 𝐺 ∈ UHGraph → ( 𝑤 ∈ ( Vtx ‘ 𝑆 ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) ) ) |
35 |
34
|
imp31 |
⊢ ( ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ∧ 𝐺 ∈ UHGraph ) → ( 𝑤 ∈ ( Vtx ‘ 𝑆 ) → ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) |
36 |
35
|
ralrimiv |
⊢ ( ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ∧ 𝐺 ∈ UHGraph ) → ∀ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) |
37 |
9 36
|
jca |
⊢ ( ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ∧ 𝐺 ∈ UHGraph ) → ( ◡ 𝑓 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) |
38 |
|
f1oeq1 |
⊢ ( 𝑔 = ◡ 𝑓 → ( 𝑔 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ↔ ◡ 𝑓 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ) ) |
39 |
|
fveq1 |
⊢ ( 𝑔 = ◡ 𝑓 → ( 𝑔 ‘ 𝑤 ) = ( ◡ 𝑓 ‘ 𝑤 ) ) |
40 |
39
|
oveq2d |
⊢ ( 𝑔 = ◡ 𝑓 → ( 𝐺 ClNeighbVtx ( 𝑔 ‘ 𝑤 ) ) = ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) |
41 |
40
|
oveq2d |
⊢ ( 𝑔 = ◡ 𝑓 → ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑔 ‘ 𝑤 ) ) ) = ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) |
42 |
41
|
breq2d |
⊢ ( 𝑔 = ◡ 𝑓 → ( ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑔 ‘ 𝑤 ) ) ) ↔ ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) |
43 |
42
|
ralbidv |
⊢ ( 𝑔 = ◡ 𝑓 → ( ∀ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑔 ‘ 𝑤 ) ) ) ↔ ∀ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) |
44 |
38 43
|
anbi12d |
⊢ ( 𝑔 = ◡ 𝑓 → ( ( 𝑔 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑔 ‘ 𝑤 ) ) ) ) ↔ ( ◡ 𝑓 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( ◡ 𝑓 ‘ 𝑤 ) ) ) ) ) ) |
45 |
7 37 44
|
spcedv |
⊢ ( ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ∧ 𝐺 ∈ UHGraph ) → ∃ 𝑔 ( 𝑔 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑔 ‘ 𝑤 ) ) ) ) ) |
46 |
45
|
3adant3 |
⊢ ( ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ∧ 𝐺 ∈ UHGraph ∧ ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ) → ∃ 𝑔 ( 𝑔 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑔 ‘ 𝑤 ) ) ) ) ) |
47 |
2 1
|
dfgrlic2 |
⊢ ( ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) → ( 𝑆 ≃𝑙𝑔𝑟 𝐺 ↔ ∃ 𝑔 ( 𝑔 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑔 ‘ 𝑤 ) ) ) ) ) ) |
48 |
47
|
ancoms |
⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑆 ≃𝑙𝑔𝑟 𝐺 ↔ ∃ 𝑔 ( 𝑔 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑔 ‘ 𝑤 ) ) ) ) ) ) |
49 |
48
|
3ad2ant3 |
⊢ ( ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ∧ 𝐺 ∈ UHGraph ∧ ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ) → ( 𝑆 ≃𝑙𝑔𝑟 𝐺 ↔ ∃ 𝑔 ( 𝑔 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑤 ∈ ( Vtx ‘ 𝑆 ) ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx 𝑤 ) ) ≃𝑔𝑟 ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx ( 𝑔 ‘ 𝑤 ) ) ) ) ) ) |
50 |
46 49
|
mpbird |
⊢ ( ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) ∧ 𝐺 ∈ UHGraph ∧ ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ) → 𝑆 ≃𝑙𝑔𝑟 𝐺 ) |
51 |
50
|
3exp |
⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) → ( 𝐺 ∈ UHGraph → ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) → 𝑆 ≃𝑙𝑔𝑟 𝐺 ) ) ) |
52 |
51
|
com23 |
⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) → ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) → ( 𝐺 ∈ UHGraph → 𝑆 ≃𝑙𝑔𝑟 𝐺 ) ) ) |
53 |
52
|
exlimiv |
⊢ ( ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝐺 ISubGr ( 𝐺 ClNeighbVtx 𝑣 ) ) ≃𝑔𝑟 ( 𝑆 ISubGr ( 𝑆 ClNeighbVtx ( 𝑓 ‘ 𝑣 ) ) ) ) → ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) → ( 𝐺 ∈ UHGraph → 𝑆 ≃𝑙𝑔𝑟 𝐺 ) ) ) |
54 |
3 4 53
|
sylc |
⊢ ( 𝐺 ≃𝑙𝑔𝑟 𝑆 → ( 𝐺 ∈ UHGraph → 𝑆 ≃𝑙𝑔𝑟 𝐺 ) ) |
55 |
54
|
com12 |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ≃𝑙𝑔𝑟 𝑆 → 𝑆 ≃𝑙𝑔𝑟 𝐺 ) ) |