Step |
Hyp |
Ref |
Expression |
1 |
|
brgric |
⊢ ( 𝐺 ≃𝑔𝑟 𝑆 ↔ ( 𝐺 GraphIso 𝑆 ) ≠ ∅ ) |
2 |
|
n0 |
⊢ ( ( 𝐺 GraphIso 𝑆 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐺 GraphIso 𝑆 ) ) |
3 |
1 2
|
bitri |
⊢ ( 𝐺 ≃𝑔𝑟 𝑆 ↔ ∃ 𝑓 𝑓 ∈ ( 𝐺 GraphIso 𝑆 ) ) |
4 |
|
grimcnv |
⊢ ( 𝐺 ∈ UHGraph → ( 𝑓 ∈ ( 𝐺 GraphIso 𝑆 ) → ◡ 𝑓 ∈ ( 𝑆 GraphIso 𝐺 ) ) ) |
5 |
|
brgrici |
⊢ ( ◡ 𝑓 ∈ ( 𝑆 GraphIso 𝐺 ) → 𝑆 ≃𝑔𝑟 𝐺 ) |
6 |
4 5
|
syl6 |
⊢ ( 𝐺 ∈ UHGraph → ( 𝑓 ∈ ( 𝐺 GraphIso 𝑆 ) → 𝑆 ≃𝑔𝑟 𝐺 ) ) |
7 |
6
|
exlimdv |
⊢ ( 𝐺 ∈ UHGraph → ( ∃ 𝑓 𝑓 ∈ ( 𝐺 GraphIso 𝑆 ) → 𝑆 ≃𝑔𝑟 𝐺 ) ) |
8 |
3 7
|
biimtrid |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ≃𝑔𝑟 𝑆 → 𝑆 ≃𝑔𝑟 𝐺 ) ) |