Metamath Proof Explorer


Theorem gricsym

Description: Graph isomorphism is symmetric for hypergraphs. (Contributed by AV, 11-Nov-2022) (Revised by AV, 3-May-2025)

Ref Expression
Assertion gricsym ( 𝐺 ∈ UHGraph → ( 𝐺𝑔𝑟 𝑆𝑆𝑔𝑟 𝐺 ) )

Proof

Step Hyp Ref Expression
1 brgric ( 𝐺𝑔𝑟 𝑆 ↔ ( 𝐺 GraphIso 𝑆 ) ≠ ∅ )
2 n0 ( ( 𝐺 GraphIso 𝑆 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐺 GraphIso 𝑆 ) )
3 1 2 bitri ( 𝐺𝑔𝑟 𝑆 ↔ ∃ 𝑓 𝑓 ∈ ( 𝐺 GraphIso 𝑆 ) )
4 grimcnv ( 𝐺 ∈ UHGraph → ( 𝑓 ∈ ( 𝐺 GraphIso 𝑆 ) → 𝑓 ∈ ( 𝑆 GraphIso 𝐺 ) ) )
5 brgrici ( 𝑓 ∈ ( 𝑆 GraphIso 𝐺 ) → 𝑆𝑔𝑟 𝐺 )
6 4 5 syl6 ( 𝐺 ∈ UHGraph → ( 𝑓 ∈ ( 𝐺 GraphIso 𝑆 ) → 𝑆𝑔𝑟 𝐺 ) )
7 6 exlimdv ( 𝐺 ∈ UHGraph → ( ∃ 𝑓 𝑓 ∈ ( 𝐺 GraphIso 𝑆 ) → 𝑆𝑔𝑟 𝐺 ) )
8 3 7 biimtrid ( 𝐺 ∈ UHGraph → ( 𝐺𝑔𝑟 𝑆𝑆𝑔𝑟 𝐺 ) )