Metamath Proof Explorer


Theorem brgrici

Description: Prove that two graphs are isomorphic by an explicit isomorphism. (Contributed by AV, 28-Apr-2025)

Ref Expression
Assertion brgrici ( 𝐹 ∈ ( 𝑅 GraphIso 𝑆 ) → 𝑅𝑔𝑟 𝑆 )

Proof

Step Hyp Ref Expression
1 ne0i ( 𝐹 ∈ ( 𝑅 GraphIso 𝑆 ) → ( 𝑅 GraphIso 𝑆 ) ≠ ∅ )
2 brgric ( 𝑅𝑔𝑟 𝑆 ↔ ( 𝑅 GraphIso 𝑆 ) ≠ ∅ )
3 1 2 sylibr ( 𝐹 ∈ ( 𝑅 GraphIso 𝑆 ) → 𝑅𝑔𝑟 𝑆 )