Description: Reverse closure of the "is isomorphic to" relation for graphs. (Contributed by AV, 12-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gricrcl | ⊢ ( 𝐺 ≃𝑔𝑟 𝑆 → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgric | ⊢ ( 𝐺 ≃𝑔𝑟 𝑆 ↔ ( 𝐺 GraphIso 𝑆 ) ≠ ∅ ) | |
| 2 | grimdmrel | ⊢ Rel dom GraphIso | |
| 3 | 2 | ovprc | ⊢ ( ¬ ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) → ( 𝐺 GraphIso 𝑆 ) = ∅ ) |
| 4 | 3 | necon1ai | ⊢ ( ( 𝐺 GraphIso 𝑆 ) ≠ ∅ → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ) |
| 5 | 1 4 | sylbi | ⊢ ( 𝐺 ≃𝑔𝑟 𝑆 → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ) |