Metamath Proof Explorer


Theorem gricrcl

Description: Reverse closure of the "is isomorphic to" relation for graphs. (Contributed by AV, 12-Jun-2025)

Ref Expression
Assertion gricrcl ( 𝐺𝑔𝑟 𝑆 → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) )

Proof

Step Hyp Ref Expression
1 brgric ( 𝐺𝑔𝑟 𝑆 ↔ ( 𝐺 GraphIso 𝑆 ) ≠ ∅ )
2 grimdmrel Rel dom GraphIso
3 2 ovprc ( ¬ ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) → ( 𝐺 GraphIso 𝑆 ) = ∅ )
4 3 necon1ai ( ( 𝐺 GraphIso 𝑆 ) ≠ ∅ → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) )
5 1 4 sylbi ( 𝐺𝑔𝑟 𝑆 → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) )