Metamath Proof Explorer


Theorem gricrcl

Description: Reverse closure of the "is isomorphic to" relation for graphs. (Contributed by AV, 12-Jun-2025)

Ref Expression
Assertion gricrcl G 𝑔𝑟 S G V S V

Proof

Step Hyp Ref Expression
1 brgric G 𝑔𝑟 S G GraphIso S
2 grimdmrel Rel dom GraphIso
3 2 ovprc ¬ G V S V G GraphIso S =
4 3 necon1ai G GraphIso S G V S V
5 1 4 sylbi G 𝑔𝑟 S G V S V