Metamath Proof Explorer


Theorem dfgric2

Description: Alternate, explicit definition of the "is isomorphic to" relation for two graphs. (Contributed by AV, 11-Nov-2022) (Revised by AV, 5-May-2025)

Ref Expression
Hypotheses dfgric2.v V = Vtx A
dfgric2.w W = Vtx B
dfgric2.i I = iEdg A
dfgric2.j J = iEdg B
Assertion dfgric2 A X B Y A 𝑔𝑟 B f f : V 1-1 onto W g g : dom I 1-1 onto dom J i dom I f I i = J g i

Proof

Step Hyp Ref Expression
1 dfgric2.v V = Vtx A
2 dfgric2.w W = Vtx B
3 dfgric2.i I = iEdg A
4 dfgric2.j J = iEdg B
5 brgric A 𝑔𝑟 B A GraphIso B
6 n0 A GraphIso B f f A GraphIso B
7 5 6 bitri A 𝑔𝑟 B f f A GraphIso B
8 vex f V
9 1 2 3 4 isgrim A X B Y f V f A GraphIso B f : V 1-1 onto W g g : dom I 1-1 onto dom J i dom I J g i = f I i
10 eqcom J g i = f I i f I i = J g i
11 10 ralbii i dom I J g i = f I i i dom I f I i = J g i
12 11 anbi2i g : dom I 1-1 onto dom J i dom I J g i = f I i g : dom I 1-1 onto dom J i dom I f I i = J g i
13 12 exbii g g : dom I 1-1 onto dom J i dom I J g i = f I i g g : dom I 1-1 onto dom J i dom I f I i = J g i
14 13 anbi2i f : V 1-1 onto W g g : dom I 1-1 onto dom J i dom I J g i = f I i f : V 1-1 onto W g g : dom I 1-1 onto dom J i dom I f I i = J g i
15 9 14 bitrdi A X B Y f V f A GraphIso B f : V 1-1 onto W g g : dom I 1-1 onto dom J i dom I f I i = J g i
16 8 15 mp3an3 A X B Y f A GraphIso B f : V 1-1 onto W g g : dom I 1-1 onto dom J i dom I f I i = J g i
17 16 exbidv A X B Y f f A GraphIso B f f : V 1-1 onto W g g : dom I 1-1 onto dom J i dom I f I i = J g i
18 7 17 bitrid A X B Y A 𝑔𝑟 B f f : V 1-1 onto W g g : dom I 1-1 onto dom J i dom I f I i = J g i