Step |
Hyp |
Ref |
Expression |
1 |
|
dfgric2.v |
⊢ 𝑉 = ( Vtx ‘ 𝐴 ) |
2 |
|
dfgric2.w |
⊢ 𝑊 = ( Vtx ‘ 𝐵 ) |
3 |
|
dfgric2.i |
⊢ 𝐼 = ( iEdg ‘ 𝐴 ) |
4 |
|
dfgric2.j |
⊢ 𝐽 = ( iEdg ‘ 𝐵 ) |
5 |
|
brgric |
⊢ ( 𝐴 ≃𝑔𝑟 𝐵 ↔ ( 𝐴 GraphIso 𝐵 ) ≠ ∅ ) |
6 |
|
n0 |
⊢ ( ( 𝐴 GraphIso 𝐵 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ) |
7 |
5 6
|
bitri |
⊢ ( 𝐴 ≃𝑔𝑟 𝐵 ↔ ∃ 𝑓 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ) |
8 |
|
vex |
⊢ 𝑓 ∈ V |
9 |
1 2 3 4
|
isgrim |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑓 ∈ V ) → ( 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ↔ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) ) ) ) ) |
10 |
|
eqcom |
⊢ ( ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) ↔ ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) |
11 |
10
|
ralbii |
⊢ ( ∀ 𝑖 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) |
12 |
11
|
anbi2i |
⊢ ( ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) ) ↔ ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
13 |
12
|
exbii |
⊢ ( ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) ) ↔ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
14 |
13
|
anbi2i |
⊢ ( ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) ) ) ↔ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
15 |
9 14
|
bitrdi |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑓 ∈ V ) → ( 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ↔ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
16 |
8 15
|
mp3an3 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ↔ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
17 |
16
|
exbidv |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ∃ 𝑓 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
18 |
7 17
|
bitrid |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( 𝐴 ≃𝑔𝑟 𝐵 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |