Metamath Proof Explorer


Theorem dfgric2

Description: Alternate, explicit definition of the "is isomorphic to" relation for two graphs. (Contributed by AV, 11-Nov-2022) (Revised by AV, 5-May-2025)

Ref Expression
Hypotheses dfgric2.v 𝑉 = ( Vtx ‘ 𝐴 )
dfgric2.w 𝑊 = ( Vtx ‘ 𝐵 )
dfgric2.i 𝐼 = ( iEdg ‘ 𝐴 )
dfgric2.j 𝐽 = ( iEdg ‘ 𝐵 )
Assertion dfgric2 ( ( 𝐴𝑋𝐵𝑌 ) → ( 𝐴𝑔𝑟 𝐵 ↔ ∃ 𝑓 ( 𝑓 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼𝑖 ) ) = ( 𝐽 ‘ ( 𝑔𝑖 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 dfgric2.v 𝑉 = ( Vtx ‘ 𝐴 )
2 dfgric2.w 𝑊 = ( Vtx ‘ 𝐵 )
3 dfgric2.i 𝐼 = ( iEdg ‘ 𝐴 )
4 dfgric2.j 𝐽 = ( iEdg ‘ 𝐵 )
5 brgric ( 𝐴𝑔𝑟 𝐵 ↔ ( 𝐴 GraphIso 𝐵 ) ≠ ∅ )
6 n0 ( ( 𝐴 GraphIso 𝐵 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) )
7 5 6 bitri ( 𝐴𝑔𝑟 𝐵 ↔ ∃ 𝑓 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) )
8 vex 𝑓 ∈ V
9 1 2 3 4 isgrim ( ( 𝐴𝑋𝐵𝑌𝑓 ∈ V ) → ( 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ↔ ( 𝑓 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑔𝑖 ) ) = ( 𝑓 “ ( 𝐼𝑖 ) ) ) ) ) )
10 eqcom ( ( 𝐽 ‘ ( 𝑔𝑖 ) ) = ( 𝑓 “ ( 𝐼𝑖 ) ) ↔ ( 𝑓 “ ( 𝐼𝑖 ) ) = ( 𝐽 ‘ ( 𝑔𝑖 ) ) )
11 10 ralbii ( ∀ 𝑖 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑔𝑖 ) ) = ( 𝑓 “ ( 𝐼𝑖 ) ) ↔ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼𝑖 ) ) = ( 𝐽 ‘ ( 𝑔𝑖 ) ) )
12 11 anbi2i ( ( 𝑔 : dom 𝐼1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑔𝑖 ) ) = ( 𝑓 “ ( 𝐼𝑖 ) ) ) ↔ ( 𝑔 : dom 𝐼1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼𝑖 ) ) = ( 𝐽 ‘ ( 𝑔𝑖 ) ) ) )
13 12 exbii ( ∃ 𝑔 ( 𝑔 : dom 𝐼1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑔𝑖 ) ) = ( 𝑓 “ ( 𝐼𝑖 ) ) ) ↔ ∃ 𝑔 ( 𝑔 : dom 𝐼1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼𝑖 ) ) = ( 𝐽 ‘ ( 𝑔𝑖 ) ) ) )
14 13 anbi2i ( ( 𝑓 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝐽 ‘ ( 𝑔𝑖 ) ) = ( 𝑓 “ ( 𝐼𝑖 ) ) ) ) ↔ ( 𝑓 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼𝑖 ) ) = ( 𝐽 ‘ ( 𝑔𝑖 ) ) ) ) )
15 9 14 bitrdi ( ( 𝐴𝑋𝐵𝑌𝑓 ∈ V ) → ( 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ↔ ( 𝑓 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼𝑖 ) ) = ( 𝐽 ‘ ( 𝑔𝑖 ) ) ) ) ) )
16 8 15 mp3an3 ( ( 𝐴𝑋𝐵𝑌 ) → ( 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ↔ ( 𝑓 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼𝑖 ) ) = ( 𝐽 ‘ ( 𝑔𝑖 ) ) ) ) ) )
17 16 exbidv ( ( 𝐴𝑋𝐵𝑌 ) → ( ∃ 𝑓 𝑓 ∈ ( 𝐴 GraphIso 𝐵 ) ↔ ∃ 𝑓 ( 𝑓 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼𝑖 ) ) = ( 𝐽 ‘ ( 𝑔𝑖 ) ) ) ) ) )
18 7 17 bitrid ( ( 𝐴𝑋𝐵𝑌 ) → ( 𝐴𝑔𝑟 𝐵 ↔ ∃ 𝑓 ( 𝑓 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼𝑖 ) ) = ( 𝐽 ‘ ( 𝑔𝑖 ) ) ) ) ) )