Metamath Proof Explorer


Theorem brgric

Description: The relation "is isomorphic to" for graphs. (Contributed by AV, 28-Apr-2025)

Ref Expression
Assertion brgric ( 𝑅𝑔𝑟 𝑆 ↔ ( 𝑅 GraphIso 𝑆 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 df-gric 𝑔𝑟 = ( GraphIso “ ( V ∖ 1o ) )
2 grimfn GraphIso Fn ( V × V )
3 1 2 brwitnlem ( 𝑅𝑔𝑟 𝑆 ↔ ( 𝑅 GraphIso 𝑆 ) ≠ ∅ )