Metamath Proof Explorer


Theorem gricbri

Description: Implications of two graphs being isomorphic. (Contributed by AV, 11-Nov-2022) (Revised by AV, 5-May-2025) (Proof shortened by AV, 12-Jun-2025)

Ref Expression
Hypotheses dfgric2.v 𝑉 = ( Vtx ‘ 𝐴 )
dfgric2.w 𝑊 = ( Vtx ‘ 𝐵 )
dfgric2.i 𝐼 = ( iEdg ‘ 𝐴 )
dfgric2.j 𝐽 = ( iEdg ‘ 𝐵 )
Assertion gricbri ( 𝐴𝑔𝑟 𝐵 → ∃ 𝑓 ( 𝑓 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼𝑖 ) ) = ( 𝐽 ‘ ( 𝑔𝑖 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 dfgric2.v 𝑉 = ( Vtx ‘ 𝐴 )
2 dfgric2.w 𝑊 = ( Vtx ‘ 𝐵 )
3 dfgric2.i 𝐼 = ( iEdg ‘ 𝐴 )
4 dfgric2.j 𝐽 = ( iEdg ‘ 𝐵 )
5 gricrcl ( 𝐴𝑔𝑟 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
6 1 2 3 4 dfgric2 ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴𝑔𝑟 𝐵 ↔ ∃ 𝑓 ( 𝑓 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼𝑖 ) ) = ( 𝐽 ‘ ( 𝑔𝑖 ) ) ) ) ) )
7 5 6 syl ( 𝐴𝑔𝑟 𝐵 → ( 𝐴𝑔𝑟 𝐵 ↔ ∃ 𝑓 ( 𝑓 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼𝑖 ) ) = ( 𝐽 ‘ ( 𝑔𝑖 ) ) ) ) ) )
8 7 ibi ( 𝐴𝑔𝑟 𝐵 → ∃ 𝑓 ( 𝑓 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼𝑖 ) ) = ( 𝐽 ‘ ( 𝑔𝑖 ) ) ) ) )