Metamath Proof Explorer


Theorem gricbri

Description: Implications of two graphs being isomorphic. (Contributed by AV, 11-Nov-2022) (Revised by AV, 5-May-2025) (Proof shortened by AV, 12-Jun-2025)

Ref Expression
Hypotheses dfgric2.v
|- V = ( Vtx ` A )
dfgric2.w
|- W = ( Vtx ` B )
dfgric2.i
|- I = ( iEdg ` A )
dfgric2.j
|- J = ( iEdg ` B )
Assertion gricbri
|- ( A ~=gr B -> E. f ( f : V -1-1-onto-> W /\ E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) )

Proof

Step Hyp Ref Expression
1 dfgric2.v
 |-  V = ( Vtx ` A )
2 dfgric2.w
 |-  W = ( Vtx ` B )
3 dfgric2.i
 |-  I = ( iEdg ` A )
4 dfgric2.j
 |-  J = ( iEdg ` B )
5 gricrcl
 |-  ( A ~=gr B -> ( A e. _V /\ B e. _V ) )
6 1 2 3 4 dfgric2
 |-  ( ( A e. _V /\ B e. _V ) -> ( A ~=gr B <-> E. f ( f : V -1-1-onto-> W /\ E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) )
7 5 6 syl
 |-  ( A ~=gr B -> ( A ~=gr B <-> E. f ( f : V -1-1-onto-> W /\ E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) )
8 7 ibi
 |-  ( A ~=gr B -> E. f ( f : V -1-1-onto-> W /\ E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) )