Description: Reverse closure of the "is isomorphic to" relation for graphs. (Contributed by AV, 12-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gricrcl | |- ( G ~=gr S -> ( G e. _V /\ S e. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgric | |- ( G ~=gr S <-> ( G GraphIso S ) =/= (/) ) |
|
| 2 | grimdmrel | |- Rel dom GraphIso |
|
| 3 | 2 | ovprc | |- ( -. ( G e. _V /\ S e. _V ) -> ( G GraphIso S ) = (/) ) |
| 4 | 3 | necon1ai | |- ( ( G GraphIso S ) =/= (/) -> ( G e. _V /\ S e. _V ) ) |
| 5 | 1 4 | sylbi | |- ( G ~=gr S -> ( G e. _V /\ S e. _V ) ) |