| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gricushgr.v |
|- V = ( Vtx ` A ) |
| 2 |
|
gricushgr.w |
|- W = ( Vtx ` B ) |
| 3 |
|
gricushgr.e |
|- E = ( Edg ` A ) |
| 4 |
|
gricushgr.k |
|- K = ( Edg ` B ) |
| 5 |
|
eqid |
|- ( iEdg ` A ) = ( iEdg ` A ) |
| 6 |
|
eqid |
|- ( iEdg ` B ) = ( iEdg ` B ) |
| 7 |
1 2 5 6
|
dfgric2 |
|- ( ( A e. USHGraph /\ B e. USHGraph ) -> ( A ~=gr B <-> E. f ( f : V -1-1-onto-> W /\ E. h ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) ) ) |
| 8 |
|
fvex |
|- ( iEdg ` B ) e. _V |
| 9 |
|
vex |
|- h e. _V |
| 10 |
|
fvex |
|- ( iEdg ` A ) e. _V |
| 11 |
10
|
cnvex |
|- `' ( iEdg ` A ) e. _V |
| 12 |
9 11
|
coex |
|- ( h o. `' ( iEdg ` A ) ) e. _V |
| 13 |
8 12
|
coex |
|- ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) e. _V |
| 14 |
13
|
a1i |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) e. _V ) |
| 15 |
2 6
|
ushgrf |
|- ( B e. USHGraph -> ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-> ( ~P W \ { (/) } ) ) |
| 16 |
|
f1f1orn |
|- ( ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-> ( ~P W \ { (/) } ) -> ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> ran ( iEdg ` B ) ) |
| 17 |
15 16
|
syl |
|- ( B e. USHGraph -> ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> ran ( iEdg ` B ) ) |
| 18 |
|
edgval |
|- ( Edg ` B ) = ran ( iEdg ` B ) |
| 19 |
4 18
|
eqtri |
|- K = ran ( iEdg ` B ) |
| 20 |
|
f1oeq3 |
|- ( K = ran ( iEdg ` B ) -> ( ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> K <-> ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> ran ( iEdg ` B ) ) ) |
| 21 |
19 20
|
ax-mp |
|- ( ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> K <-> ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> ran ( iEdg ` B ) ) |
| 22 |
17 21
|
sylibr |
|- ( B e. USHGraph -> ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> K ) |
| 23 |
22
|
ad3antlr |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> K ) |
| 24 |
|
simprl |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) ) |
| 25 |
1 5
|
ushgrf |
|- ( A e. USHGraph -> ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-> ( ~P V \ { (/) } ) ) |
| 26 |
|
f1f1orn |
|- ( ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-> ( ~P V \ { (/) } ) -> ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` A ) ) |
| 27 |
25 26
|
syl |
|- ( A e. USHGraph -> ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` A ) ) |
| 28 |
|
edgval |
|- ( Edg ` A ) = ran ( iEdg ` A ) |
| 29 |
3 28
|
eqtri |
|- E = ran ( iEdg ` A ) |
| 30 |
|
f1oeq3 |
|- ( E = ran ( iEdg ` A ) -> ( ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> E <-> ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` A ) ) ) |
| 31 |
29 30
|
ax-mp |
|- ( ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> E <-> ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` A ) ) |
| 32 |
27 31
|
sylibr |
|- ( A e. USHGraph -> ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> E ) |
| 33 |
|
f1ocnv |
|- ( ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> E -> `' ( iEdg ` A ) : E -1-1-onto-> dom ( iEdg ` A ) ) |
| 34 |
32 33
|
syl |
|- ( A e. USHGraph -> `' ( iEdg ` A ) : E -1-1-onto-> dom ( iEdg ` A ) ) |
| 35 |
34
|
ad3antrrr |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> `' ( iEdg ` A ) : E -1-1-onto-> dom ( iEdg ` A ) ) |
| 36 |
|
f1oco |
|- ( ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ `' ( iEdg ` A ) : E -1-1-onto-> dom ( iEdg ` A ) ) -> ( h o. `' ( iEdg ` A ) ) : E -1-1-onto-> dom ( iEdg ` B ) ) |
| 37 |
24 35 36
|
syl2anc |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( h o. `' ( iEdg ` A ) ) : E -1-1-onto-> dom ( iEdg ` B ) ) |
| 38 |
|
f1oco |
|- ( ( ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> K /\ ( h o. `' ( iEdg ` A ) ) : E -1-1-onto-> dom ( iEdg ` B ) ) -> ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) : E -1-1-onto-> K ) |
| 39 |
23 37 38
|
syl2anc |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) : E -1-1-onto-> K ) |
| 40 |
29
|
eleq2i |
|- ( e e. E <-> e e. ran ( iEdg ` A ) ) |
| 41 |
|
f1fn |
|- ( ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-> ( ~P V \ { (/) } ) -> ( iEdg ` A ) Fn dom ( iEdg ` A ) ) |
| 42 |
25 41
|
syl |
|- ( A e. USHGraph -> ( iEdg ` A ) Fn dom ( iEdg ` A ) ) |
| 43 |
|
fvelrnb |
|- ( ( iEdg ` A ) Fn dom ( iEdg ` A ) -> ( e e. ran ( iEdg ` A ) <-> E. j e. dom ( iEdg ` A ) ( ( iEdg ` A ) ` j ) = e ) ) |
| 44 |
42 43
|
syl |
|- ( A e. USHGraph -> ( e e. ran ( iEdg ` A ) <-> E. j e. dom ( iEdg ` A ) ( ( iEdg ` A ) ` j ) = e ) ) |
| 45 |
44
|
ad3antrrr |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( e e. ran ( iEdg ` A ) <-> E. j e. dom ( iEdg ` A ) ( ( iEdg ` A ) ` j ) = e ) ) |
| 46 |
|
fveq2 |
|- ( i = j -> ( ( iEdg ` A ) ` i ) = ( ( iEdg ` A ) ` j ) ) |
| 47 |
46
|
imaeq2d |
|- ( i = j -> ( f " ( ( iEdg ` A ) ` i ) ) = ( f " ( ( iEdg ` A ) ` j ) ) ) |
| 48 |
|
2fveq3 |
|- ( i = j -> ( ( iEdg ` B ) ` ( h ` i ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) |
| 49 |
47 48
|
eqeq12d |
|- ( i = j -> ( ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) <-> ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) ) |
| 50 |
49
|
rspccv |
|- ( A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) -> ( j e. dom ( iEdg ` A ) -> ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) ) |
| 51 |
50
|
ad2antll |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( j e. dom ( iEdg ` A ) -> ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) ) |
| 52 |
51
|
imp |
|- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) |
| 53 |
|
coass |
|- ( ( ( iEdg ` B ) o. h ) o. `' ( iEdg ` A ) ) = ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) |
| 54 |
53
|
eqcomi |
|- ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) = ( ( ( iEdg ` B ) o. h ) o. `' ( iEdg ` A ) ) |
| 55 |
54
|
fveq1i |
|- ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` ( ( iEdg ` A ) ` j ) ) = ( ( ( ( iEdg ` B ) o. h ) o. `' ( iEdg ` A ) ) ` ( ( iEdg ` A ) ` j ) ) |
| 56 |
|
dff1o4 |
|- ( ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` A ) <-> ( ( iEdg ` A ) Fn dom ( iEdg ` A ) /\ `' ( iEdg ` A ) Fn ran ( iEdg ` A ) ) ) |
| 57 |
27 56
|
sylib |
|- ( A e. USHGraph -> ( ( iEdg ` A ) Fn dom ( iEdg ` A ) /\ `' ( iEdg ` A ) Fn ran ( iEdg ` A ) ) ) |
| 58 |
57
|
simprd |
|- ( A e. USHGraph -> `' ( iEdg ` A ) Fn ran ( iEdg ` A ) ) |
| 59 |
58
|
ad4antr |
|- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> `' ( iEdg ` A ) Fn ran ( iEdg ` A ) ) |
| 60 |
|
f1of |
|- ( ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` A ) -> ( iEdg ` A ) : dom ( iEdg ` A ) --> ran ( iEdg ` A ) ) |
| 61 |
27 60
|
syl |
|- ( A e. USHGraph -> ( iEdg ` A ) : dom ( iEdg ` A ) --> ran ( iEdg ` A ) ) |
| 62 |
61
|
ad3antrrr |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( iEdg ` A ) : dom ( iEdg ` A ) --> ran ( iEdg ` A ) ) |
| 63 |
62
|
ffvelcdmda |
|- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( ( iEdg ` A ) ` j ) e. ran ( iEdg ` A ) ) |
| 64 |
|
fvco2 |
|- ( ( `' ( iEdg ` A ) Fn ran ( iEdg ` A ) /\ ( ( iEdg ` A ) ` j ) e. ran ( iEdg ` A ) ) -> ( ( ( ( iEdg ` B ) o. h ) o. `' ( iEdg ` A ) ) ` ( ( iEdg ` A ) ` j ) ) = ( ( ( iEdg ` B ) o. h ) ` ( `' ( iEdg ` A ) ` ( ( iEdg ` A ) ` j ) ) ) ) |
| 65 |
59 63 64
|
syl2anc |
|- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( ( ( ( iEdg ` B ) o. h ) o. `' ( iEdg ` A ) ) ` ( ( iEdg ` A ) ` j ) ) = ( ( ( iEdg ` B ) o. h ) ` ( `' ( iEdg ` A ) ` ( ( iEdg ` A ) ` j ) ) ) ) |
| 66 |
32
|
ad3antrrr |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> E ) |
| 67 |
|
f1ocnvfv1 |
|- ( ( ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> E /\ j e. dom ( iEdg ` A ) ) -> ( `' ( iEdg ` A ) ` ( ( iEdg ` A ) ` j ) ) = j ) |
| 68 |
66 67
|
sylan |
|- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( `' ( iEdg ` A ) ` ( ( iEdg ` A ) ` j ) ) = j ) |
| 69 |
68
|
fveq2d |
|- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( ( ( iEdg ` B ) o. h ) ` ( `' ( iEdg ` A ) ` ( ( iEdg ` A ) ` j ) ) ) = ( ( ( iEdg ` B ) o. h ) ` j ) ) |
| 70 |
|
f1ofn |
|- ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) -> h Fn dom ( iEdg ` A ) ) |
| 71 |
70
|
ad2antrl |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> h Fn dom ( iEdg ` A ) ) |
| 72 |
|
fvco2 |
|- ( ( h Fn dom ( iEdg ` A ) /\ j e. dom ( iEdg ` A ) ) -> ( ( ( iEdg ` B ) o. h ) ` j ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) |
| 73 |
71 72
|
sylan |
|- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( ( ( iEdg ` B ) o. h ) ` j ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) |
| 74 |
65 69 73
|
3eqtrd |
|- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( ( ( ( iEdg ` B ) o. h ) o. `' ( iEdg ` A ) ) ` ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) |
| 75 |
55 74
|
eqtr2id |
|- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( ( iEdg ` B ) ` ( h ` j ) ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` ( ( iEdg ` A ) ` j ) ) ) |
| 76 |
75
|
ad2antrr |
|- ( ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) /\ ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) /\ ( ( iEdg ` A ) ` j ) = e ) -> ( ( iEdg ` B ) ` ( h ` j ) ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` ( ( iEdg ` A ) ` j ) ) ) |
| 77 |
|
imaeq2 |
|- ( e = ( ( iEdg ` A ) ` j ) -> ( f " e ) = ( f " ( ( iEdg ` A ) ` j ) ) ) |
| 78 |
77
|
eqcoms |
|- ( ( ( iEdg ` A ) ` j ) = e -> ( f " e ) = ( f " ( ( iEdg ` A ) ` j ) ) ) |
| 79 |
|
simpr |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) /\ ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) -> ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) |
| 80 |
78 79
|
sylan9eqr |
|- ( ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) /\ ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) /\ ( ( iEdg ` A ) ` j ) = e ) -> ( f " e ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) |
| 81 |
|
fveq2 |
|- ( e = ( ( iEdg ` A ) ` j ) -> ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` ( ( iEdg ` A ) ` j ) ) ) |
| 82 |
81
|
eqcoms |
|- ( ( ( iEdg ` A ) ` j ) = e -> ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` ( ( iEdg ` A ) ` j ) ) ) |
| 83 |
82
|
adantl |
|- ( ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) /\ ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) /\ ( ( iEdg ` A ) ` j ) = e ) -> ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` ( ( iEdg ` A ) ` j ) ) ) |
| 84 |
76 80 83
|
3eqtr4d |
|- ( ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) /\ ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) /\ ( ( iEdg ` A ) ` j ) = e ) -> ( f " e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) |
| 85 |
84
|
ex |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) /\ ( f " ( ( iEdg ` A ) ` j ) ) = ( ( iEdg ` B ) ` ( h ` j ) ) ) -> ( ( ( iEdg ` A ) ` j ) = e -> ( f " e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) ) |
| 86 |
52 85
|
mpdan |
|- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) /\ j e. dom ( iEdg ` A ) ) -> ( ( ( iEdg ` A ) ` j ) = e -> ( f " e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) ) |
| 87 |
86
|
rexlimdva |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( E. j e. dom ( iEdg ` A ) ( ( iEdg ` A ) ` j ) = e -> ( f " e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) ) |
| 88 |
45 87
|
sylbid |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( e e. ran ( iEdg ` A ) -> ( f " e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) ) |
| 89 |
40 88
|
biimtrid |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( e e. E -> ( f " e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) ) |
| 90 |
89
|
ralrimiv |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> A. e e. E ( f " e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) |
| 91 |
39 90
|
jca |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) ) |
| 92 |
|
f1oeq1 |
|- ( g = ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) -> ( g : E -1-1-onto-> K <-> ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) : E -1-1-onto-> K ) ) |
| 93 |
|
fveq1 |
|- ( g = ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) -> ( g ` e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) |
| 94 |
93
|
eqeq2d |
|- ( g = ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) -> ( ( f " e ) = ( g ` e ) <-> ( f " e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) ) |
| 95 |
94
|
ralbidv |
|- ( g = ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) -> ( A. e e. E ( f " e ) = ( g ` e ) <-> A. e e. E ( f " e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) ) |
| 96 |
92 95
|
anbi12d |
|- ( g = ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) -> ( ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) <-> ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( ( ( iEdg ` B ) o. ( h o. `' ( iEdg ` A ) ) ) ` e ) ) ) ) |
| 97 |
14 91 96
|
spcedv |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) -> E. g ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) |
| 98 |
97
|
ex |
|- ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) -> ( ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) -> E. g ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) ) |
| 99 |
98
|
exlimdv |
|- ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) -> ( E. h ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) -> E. g ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) ) |
| 100 |
8
|
cnvex |
|- `' ( iEdg ` B ) e. _V |
| 101 |
|
vex |
|- g e. _V |
| 102 |
101 10
|
coex |
|- ( g o. ( iEdg ` A ) ) e. _V |
| 103 |
100 102
|
coex |
|- ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) e. _V |
| 104 |
103
|
a1i |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) e. _V ) |
| 105 |
17
|
ad3antlr |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> ran ( iEdg ` B ) ) |
| 106 |
|
f1ocnv |
|- ( ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> ran ( iEdg ` B ) -> `' ( iEdg ` B ) : ran ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` B ) ) |
| 107 |
105 106
|
syl |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> `' ( iEdg ` B ) : ran ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` B ) ) |
| 108 |
|
f1oeq23 |
|- ( ( E = ran ( iEdg ` A ) /\ K = ran ( iEdg ` B ) ) -> ( g : E -1-1-onto-> K <-> g : ran ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` B ) ) ) |
| 109 |
29 19 108
|
mp2an |
|- ( g : E -1-1-onto-> K <-> g : ran ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` B ) ) |
| 110 |
109
|
biimpi |
|- ( g : E -1-1-onto-> K -> g : ran ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` B ) ) |
| 111 |
110
|
ad2antrl |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> g : ran ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` B ) ) |
| 112 |
27
|
ad3antrrr |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` A ) ) |
| 113 |
|
f1oco |
|- ( ( g : ran ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` B ) /\ ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` A ) ) -> ( g o. ( iEdg ` A ) ) : dom ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` B ) ) |
| 114 |
111 112 113
|
syl2anc |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> ( g o. ( iEdg ` A ) ) : dom ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` B ) ) |
| 115 |
|
f1oco |
|- ( ( `' ( iEdg ` B ) : ran ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` B ) /\ ( g o. ( iEdg ` A ) ) : dom ( iEdg ` A ) -1-1-onto-> ran ( iEdg ` B ) ) -> ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) ) |
| 116 |
107 114 115
|
syl2anc |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) ) |
| 117 |
61
|
ad2antrr |
|- ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) -> ( iEdg ` A ) : dom ( iEdg ` A ) --> ran ( iEdg ` A ) ) |
| 118 |
117
|
ffund |
|- ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) -> Fun ( iEdg ` A ) ) |
| 119 |
118
|
adantr |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> Fun ( iEdg ` A ) ) |
| 120 |
|
fvelrn |
|- ( ( Fun ( iEdg ` A ) /\ i e. dom ( iEdg ` A ) ) -> ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) |
| 121 |
119 120
|
sylan |
|- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) -> ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) |
| 122 |
29
|
raleqi |
|- ( A. e e. E ( f " e ) = ( g ` e ) <-> A. e e. ran ( iEdg ` A ) ( f " e ) = ( g ` e ) ) |
| 123 |
122
|
biimpi |
|- ( A. e e. E ( f " e ) = ( g ` e ) -> A. e e. ran ( iEdg ` A ) ( f " e ) = ( g ` e ) ) |
| 124 |
123
|
ad2antll |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> A. e e. ran ( iEdg ` A ) ( f " e ) = ( g ` e ) ) |
| 125 |
124
|
adantr |
|- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) -> A. e e. ran ( iEdg ` A ) ( f " e ) = ( g ` e ) ) |
| 126 |
|
imaeq2 |
|- ( e = ( ( iEdg ` A ) ` i ) -> ( f " e ) = ( f " ( ( iEdg ` A ) ` i ) ) ) |
| 127 |
|
fveq2 |
|- ( e = ( ( iEdg ` A ) ` i ) -> ( g ` e ) = ( g ` ( ( iEdg ` A ) ` i ) ) ) |
| 128 |
126 127
|
eqeq12d |
|- ( e = ( ( iEdg ` A ) ` i ) -> ( ( f " e ) = ( g ` e ) <-> ( f " ( ( iEdg ` A ) ` i ) ) = ( g ` ( ( iEdg ` A ) ` i ) ) ) ) |
| 129 |
128
|
rspccva |
|- ( ( A. e e. ran ( iEdg ` A ) ( f " e ) = ( g ` e ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( f " ( ( iEdg ` A ) ` i ) ) = ( g ` ( ( iEdg ` A ) ` i ) ) ) |
| 130 |
125 129
|
sylan |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( f " ( ( iEdg ` A ) ` i ) ) = ( g ` ( ( iEdg ` A ) ` i ) ) ) |
| 131 |
|
feq3 |
|- ( E = ran ( iEdg ` A ) -> ( ( iEdg ` A ) : dom ( iEdg ` A ) --> E <-> ( iEdg ` A ) : dom ( iEdg ` A ) --> ran ( iEdg ` A ) ) ) |
| 132 |
29 131
|
ax-mp |
|- ( ( iEdg ` A ) : dom ( iEdg ` A ) --> E <-> ( iEdg ` A ) : dom ( iEdg ` A ) --> ran ( iEdg ` A ) ) |
| 133 |
61 132
|
sylibr |
|- ( A e. USHGraph -> ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) |
| 134 |
133
|
ad2antrr |
|- ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) -> ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) |
| 135 |
|
f1ofn |
|- ( g : E -1-1-onto-> K -> g Fn E ) |
| 136 |
135
|
adantr |
|- ( ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) -> g Fn E ) |
| 137 |
134 136
|
anim12ci |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> ( g Fn E /\ ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) ) |
| 138 |
137
|
ad2antrr |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( g Fn E /\ ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) ) |
| 139 |
|
fnfco |
|- ( ( g Fn E /\ ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) -> ( g o. ( iEdg ` A ) ) Fn dom ( iEdg ` A ) ) |
| 140 |
138 139
|
syl |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( g o. ( iEdg ` A ) ) Fn dom ( iEdg ` A ) ) |
| 141 |
|
simplr |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> i e. dom ( iEdg ` A ) ) |
| 142 |
|
fvco2 |
|- ( ( ( g o. ( iEdg ` A ) ) Fn dom ( iEdg ` A ) /\ i e. dom ( iEdg ` A ) ) -> ( ( ( _I |` ran ( iEdg ` B ) ) o. ( g o. ( iEdg ` A ) ) ) ` i ) = ( ( _I |` ran ( iEdg ` B ) ) ` ( ( g o. ( iEdg ` A ) ) ` i ) ) ) |
| 143 |
140 141 142
|
syl2anc |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( ( ( _I |` ran ( iEdg ` B ) ) o. ( g o. ( iEdg ` A ) ) ) ` i ) = ( ( _I |` ran ( iEdg ` B ) ) ` ( ( g o. ( iEdg ` A ) ) ` i ) ) ) |
| 144 |
|
f1of |
|- ( ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> K -> ( iEdg ` B ) : dom ( iEdg ` B ) --> K ) |
| 145 |
22 144
|
syl |
|- ( B e. USHGraph -> ( iEdg ` B ) : dom ( iEdg ` B ) --> K ) |
| 146 |
145
|
ffund |
|- ( B e. USHGraph -> Fun ( iEdg ` B ) ) |
| 147 |
|
funcocnv2 |
|- ( Fun ( iEdg ` B ) -> ( ( iEdg ` B ) o. `' ( iEdg ` B ) ) = ( _I |` ran ( iEdg ` B ) ) ) |
| 148 |
146 147
|
syl |
|- ( B e. USHGraph -> ( ( iEdg ` B ) o. `' ( iEdg ` B ) ) = ( _I |` ran ( iEdg ` B ) ) ) |
| 149 |
148
|
eqcomd |
|- ( B e. USHGraph -> ( _I |` ran ( iEdg ` B ) ) = ( ( iEdg ` B ) o. `' ( iEdg ` B ) ) ) |
| 150 |
149
|
ad5antlr |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( _I |` ran ( iEdg ` B ) ) = ( ( iEdg ` B ) o. `' ( iEdg ` B ) ) ) |
| 151 |
150
|
coeq1d |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( ( _I |` ran ( iEdg ` B ) ) o. ( g o. ( iEdg ` A ) ) ) = ( ( ( iEdg ` B ) o. `' ( iEdg ` B ) ) o. ( g o. ( iEdg ` A ) ) ) ) |
| 152 |
151
|
fveq1d |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( ( ( _I |` ran ( iEdg ` B ) ) o. ( g o. ( iEdg ` A ) ) ) ` i ) = ( ( ( ( iEdg ` B ) o. `' ( iEdg ` B ) ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) |
| 153 |
|
coass |
|- ( ( ( iEdg ` B ) o. `' ( iEdg ` B ) ) o. ( g o. ( iEdg ` A ) ) ) = ( ( iEdg ` B ) o. ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ) |
| 154 |
153
|
fveq1i |
|- ( ( ( ( iEdg ` B ) o. `' ( iEdg ` B ) ) o. ( g o. ( iEdg ` A ) ) ) ` i ) = ( ( ( iEdg ` B ) o. ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ) ` i ) |
| 155 |
152 154
|
eqtrdi |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( ( ( _I |` ran ( iEdg ` B ) ) o. ( g o. ( iEdg ` A ) ) ) ` i ) = ( ( ( iEdg ` B ) o. ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ) ` i ) ) |
| 156 |
|
f1of |
|- ( g : E -1-1-onto-> K -> g : E --> K ) |
| 157 |
|
eqid |
|- E = E |
| 158 |
157 19
|
feq23i |
|- ( g : E --> K <-> g : E --> ran ( iEdg ` B ) ) |
| 159 |
156 158
|
sylib |
|- ( g : E -1-1-onto-> K -> g : E --> ran ( iEdg ` B ) ) |
| 160 |
159
|
adantr |
|- ( ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) -> g : E --> ran ( iEdg ` B ) ) |
| 161 |
|
f1of |
|- ( ( iEdg ` A ) : dom ( iEdg ` A ) -1-1-onto-> E -> ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) |
| 162 |
32 161
|
syl |
|- ( A e. USHGraph -> ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) |
| 163 |
162
|
ad2antrr |
|- ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) -> ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) |
| 164 |
|
fco |
|- ( ( g : E --> ran ( iEdg ` B ) /\ ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) -> ( g o. ( iEdg ` A ) ) : dom ( iEdg ` A ) --> ran ( iEdg ` B ) ) |
| 165 |
160 163 164
|
syl2anr |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> ( g o. ( iEdg ` A ) ) : dom ( iEdg ` A ) --> ran ( iEdg ` B ) ) |
| 166 |
165
|
anim1i |
|- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) -> ( ( g o. ( iEdg ` A ) ) : dom ( iEdg ` A ) --> ran ( iEdg ` B ) /\ i e. dom ( iEdg ` A ) ) ) |
| 167 |
166
|
adantr |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( ( g o. ( iEdg ` A ) ) : dom ( iEdg ` A ) --> ran ( iEdg ` B ) /\ i e. dom ( iEdg ` A ) ) ) |
| 168 |
|
ffvelcdm |
|- ( ( ( g o. ( iEdg ` A ) ) : dom ( iEdg ` A ) --> ran ( iEdg ` B ) /\ i e. dom ( iEdg ` A ) ) -> ( ( g o. ( iEdg ` A ) ) ` i ) e. ran ( iEdg ` B ) ) |
| 169 |
167 168
|
syl |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( ( g o. ( iEdg ` A ) ) ` i ) e. ran ( iEdg ` B ) ) |
| 170 |
|
fvresi |
|- ( ( ( g o. ( iEdg ` A ) ) ` i ) e. ran ( iEdg ` B ) -> ( ( _I |` ran ( iEdg ` B ) ) ` ( ( g o. ( iEdg ` A ) ) ` i ) ) = ( ( g o. ( iEdg ` A ) ) ` i ) ) |
| 171 |
169 170
|
syl |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( ( _I |` ran ( iEdg ` B ) ) ` ( ( g o. ( iEdg ` A ) ) ` i ) ) = ( ( g o. ( iEdg ` A ) ) ` i ) ) |
| 172 |
162
|
ad3antrrr |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) |
| 173 |
172
|
anim1i |
|- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) -> ( ( iEdg ` A ) : dom ( iEdg ` A ) --> E /\ i e. dom ( iEdg ` A ) ) ) |
| 174 |
173
|
adantr |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( ( iEdg ` A ) : dom ( iEdg ` A ) --> E /\ i e. dom ( iEdg ` A ) ) ) |
| 175 |
|
fvco3 |
|- ( ( ( iEdg ` A ) : dom ( iEdg ` A ) --> E /\ i e. dom ( iEdg ` A ) ) -> ( ( g o. ( iEdg ` A ) ) ` i ) = ( g ` ( ( iEdg ` A ) ` i ) ) ) |
| 176 |
174 175
|
syl |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( ( g o. ( iEdg ` A ) ) ` i ) = ( g ` ( ( iEdg ` A ) ` i ) ) ) |
| 177 |
171 176
|
eqtrd |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( ( _I |` ran ( iEdg ` B ) ) ` ( ( g o. ( iEdg ` A ) ) ` i ) ) = ( g ` ( ( iEdg ` A ) ` i ) ) ) |
| 178 |
143 155 177
|
3eqtr3rd |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( g ` ( ( iEdg ` A ) ` i ) ) = ( ( ( iEdg ` B ) o. ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ) ` i ) ) |
| 179 |
|
dff1o4 |
|- ( ( iEdg ` B ) : dom ( iEdg ` B ) -1-1-onto-> K <-> ( ( iEdg ` B ) Fn dom ( iEdg ` B ) /\ `' ( iEdg ` B ) Fn K ) ) |
| 180 |
22 179
|
sylib |
|- ( B e. USHGraph -> ( ( iEdg ` B ) Fn dom ( iEdg ` B ) /\ `' ( iEdg ` B ) Fn K ) ) |
| 181 |
180
|
simprd |
|- ( B e. USHGraph -> `' ( iEdg ` B ) Fn K ) |
| 182 |
181
|
ad5antlr |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> `' ( iEdg ` B ) Fn K ) |
| 183 |
156
|
adantr |
|- ( ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) -> g : E --> K ) |
| 184 |
134 183
|
anim12ci |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> ( g : E --> K /\ ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) ) |
| 185 |
184
|
ad2antrr |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( g : E --> K /\ ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) ) |
| 186 |
|
fco |
|- ( ( g : E --> K /\ ( iEdg ` A ) : dom ( iEdg ` A ) --> E ) -> ( g o. ( iEdg ` A ) ) : dom ( iEdg ` A ) --> K ) |
| 187 |
185 186
|
syl |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( g o. ( iEdg ` A ) ) : dom ( iEdg ` A ) --> K ) |
| 188 |
|
fnfco |
|- ( ( `' ( iEdg ` B ) Fn K /\ ( g o. ( iEdg ` A ) ) : dom ( iEdg ` A ) --> K ) -> ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) Fn dom ( iEdg ` A ) ) |
| 189 |
182 187 188
|
syl2anc |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) Fn dom ( iEdg ` A ) ) |
| 190 |
|
fvco2 |
|- ( ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) Fn dom ( iEdg ` A ) /\ i e. dom ( iEdg ` A ) ) -> ( ( ( iEdg ` B ) o. ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ) ` i ) = ( ( iEdg ` B ) ` ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) ) |
| 191 |
189 141 190
|
syl2anc |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( ( ( iEdg ` B ) o. ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ) ` i ) = ( ( iEdg ` B ) ` ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) ) |
| 192 |
130 178 191
|
3eqtrd |
|- ( ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) /\ ( ( iEdg ` A ) ` i ) e. ran ( iEdg ` A ) ) -> ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) ) |
| 193 |
121 192
|
mpdan |
|- ( ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) /\ i e. dom ( iEdg ` A ) ) -> ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) ) |
| 194 |
193
|
ralrimiva |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) ) |
| 195 |
116 194
|
jca |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) ) ) |
| 196 |
|
f1oeq1 |
|- ( h = ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) -> ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) <-> ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) ) ) |
| 197 |
|
fveq1 |
|- ( h = ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) -> ( h ` i ) = ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) |
| 198 |
197
|
fveq2d |
|- ( h = ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) -> ( ( iEdg ` B ) ` ( h ` i ) ) = ( ( iEdg ` B ) ` ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) ) |
| 199 |
198
|
eqeq2d |
|- ( h = ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) -> ( ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) <-> ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) ) ) |
| 200 |
199
|
ralbidv |
|- ( h = ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) -> ( A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) <-> A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) ) ) |
| 201 |
196 200
|
anbi12d |
|- ( h = ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) -> ( ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) <-> ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( ( `' ( iEdg ` B ) o. ( g o. ( iEdg ` A ) ) ) ` i ) ) ) ) ) |
| 202 |
104 195 201
|
spcedv |
|- ( ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) /\ ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) -> E. h ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) |
| 203 |
202
|
ex |
|- ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) -> ( ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) -> E. h ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) ) |
| 204 |
203
|
exlimdv |
|- ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) -> ( E. g ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) -> E. h ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) ) |
| 205 |
99 204
|
impbid |
|- ( ( ( A e. USHGraph /\ B e. USHGraph ) /\ f : V -1-1-onto-> W ) -> ( E. h ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) <-> E. g ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) ) |
| 206 |
205
|
pm5.32da |
|- ( ( A e. USHGraph /\ B e. USHGraph ) -> ( ( f : V -1-1-onto-> W /\ E. h ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) <-> ( f : V -1-1-onto-> W /\ E. g ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) ) ) |
| 207 |
206
|
exbidv |
|- ( ( A e. USHGraph /\ B e. USHGraph ) -> ( E. f ( f : V -1-1-onto-> W /\ E. h ( h : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( h ` i ) ) ) ) <-> E. f ( f : V -1-1-onto-> W /\ E. g ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) ) ) |
| 208 |
7 207
|
bitrd |
|- ( ( A e. USHGraph /\ B e. USHGraph ) -> ( A ~=gr B <-> E. f ( f : V -1-1-onto-> W /\ E. g ( g : E -1-1-onto-> K /\ A. e e. E ( f " e ) = ( g ` e ) ) ) ) ) |