Metamath Proof Explorer


Theorem gricbri

Description: Implications of two graphs being isomorphic. (Contributed by AV, 11-Nov-2022) (Revised by AV, 5-May-2025) (Proof shortened by AV, 12-Jun-2025)

Ref Expression
Hypotheses dfgric2.v V = Vtx A
dfgric2.w W = Vtx B
dfgric2.i I = iEdg A
dfgric2.j J = iEdg B
Assertion gricbri A 𝑔𝑟 B f f : V 1-1 onto W g g : dom I 1-1 onto dom J i dom I f I i = J g i

Proof

Step Hyp Ref Expression
1 dfgric2.v V = Vtx A
2 dfgric2.w W = Vtx B
3 dfgric2.i I = iEdg A
4 dfgric2.j J = iEdg B
5 gricrcl A 𝑔𝑟 B A V B V
6 1 2 3 4 dfgric2 A V B V A 𝑔𝑟 B f f : V 1-1 onto W g g : dom I 1-1 onto dom J i dom I f I i = J g i
7 5 6 syl A 𝑔𝑟 B A 𝑔𝑟 B f f : V 1-1 onto W g g : dom I 1-1 onto dom J i dom I f I i = J g i
8 7 ibi A 𝑔𝑟 B f f : V 1-1 onto W g g : dom I 1-1 onto dom J i dom I f I i = J g i