Metamath Proof Explorer


Theorem isgrim

Description: An isomorphism of graphs is a bijection between their vertices that preserves adjacency. (Contributed by AV, 19-Apr-2025)

Ref Expression
Hypotheses isgrim.v 𝑉 = ( Vtx ‘ 𝐺 )
isgrim.w 𝑊 = ( Vtx ‘ 𝐻 )
isgrim.e 𝐸 = ( iEdg ‘ 𝐺 )
isgrim.d 𝐷 = ( iEdg ‘ 𝐻 )
Assertion isgrim ( ( 𝐺𝑋𝐻𝑌𝐹𝑍 ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom 𝐸1-1-onto→ dom 𝐷 ∧ ∀ 𝑖 ∈ dom 𝐸 ( 𝐷 ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( 𝐸𝑖 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 isgrim.v 𝑉 = ( Vtx ‘ 𝐺 )
2 isgrim.w 𝑊 = ( Vtx ‘ 𝐻 )
3 isgrim.e 𝐸 = ( iEdg ‘ 𝐺 )
4 isgrim.d 𝐷 = ( iEdg ‘ 𝐻 )
5 df-grim GraphIso = ( 𝑔 ∈ V , ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ) / 𝑑 ] ( 𝑗 : dom 𝑒1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) ) ) } )
6 elex ( 𝐺𝑋𝐺 ∈ V )
7 6 3ad2ant1 ( ( 𝐺𝑋𝐻𝑌𝐹𝑍 ) → 𝐺 ∈ V )
8 elex ( 𝐻𝑌𝐻 ∈ V )
9 8 3ad2ant2 ( ( 𝐺𝑋𝐻𝑌𝐹𝑍 ) → 𝐻 ∈ V )
10 f1of ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝑓 : ( Vtx ‘ 𝐺 ) ⟶ ( Vtx ‘ 𝐻 ) )
11 fvex ( Vtx ‘ 𝐻 ) ∈ V
12 fvex ( Vtx ‘ 𝐺 ) ∈ V
13 11 12 elmap ( 𝑓 ∈ ( ( Vtx ‘ 𝐻 ) ↑m ( Vtx ‘ 𝐺 ) ) ↔ 𝑓 : ( Vtx ‘ 𝐺 ) ⟶ ( Vtx ‘ 𝐻 ) )
14 10 13 sylibr ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝑓 ∈ ( ( Vtx ‘ 𝐻 ) ↑m ( Vtx ‘ 𝐺 ) ) )
15 14 adantr ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → 𝑓 ∈ ( ( Vtx ‘ 𝐻 ) ↑m ( Vtx ‘ 𝐺 ) ) )
16 ovex ( ( Vtx ‘ 𝐻 ) ↑m ( Vtx ‘ 𝐺 ) ) ∈ V
17 15 16 abex { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) } ∈ V
18 17 a1i ( ( 𝐺𝑋𝐻𝑌𝐹𝑍 ) → { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) } ∈ V )
19 eqidd ( ( 𝑔 = 𝐺 = 𝐻 ) → 𝑓 = 𝑓 )
20 fveq2 ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) )
21 20 adantr ( ( 𝑔 = 𝐺 = 𝐻 ) → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) )
22 fveq2 ( = 𝐻 → ( Vtx ‘ ) = ( Vtx ‘ 𝐻 ) )
23 22 adantl ( ( 𝑔 = 𝐺 = 𝐻 ) → ( Vtx ‘ ) = ( Vtx ‘ 𝐻 ) )
24 19 21 23 f1oeq123d ( ( 𝑔 = 𝐺 = 𝐻 ) → ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ) ↔ 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) )
25 fvexd ( ( 𝑔 = 𝐺 = 𝐻 ) → ( iEdg ‘ 𝑔 ) ∈ V )
26 fveq2 ( 𝑔 = 𝐺 → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) )
27 26 adantr ( ( 𝑔 = 𝐺 = 𝐻 ) → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) )
28 fvexd ( ( ( 𝑔 = 𝐺 = 𝐻 ) ∧ 𝑒 = ( iEdg ‘ 𝐺 ) ) → ( iEdg ‘ ) ∈ V )
29 fveq2 ( = 𝐻 → ( iEdg ‘ ) = ( iEdg ‘ 𝐻 ) )
30 29 adantl ( ( 𝑔 = 𝐺 = 𝐻 ) → ( iEdg ‘ ) = ( iEdg ‘ 𝐻 ) )
31 30 adantr ( ( ( 𝑔 = 𝐺 = 𝐻 ) ∧ 𝑒 = ( iEdg ‘ 𝐺 ) ) → ( iEdg ‘ ) = ( iEdg ‘ 𝐻 ) )
32 eqidd ( ( 𝑒 = ( iEdg ‘ 𝐺 ) ∧ 𝑑 = ( iEdg ‘ 𝐻 ) ) → 𝑗 = 𝑗 )
33 dmeq ( 𝑒 = ( iEdg ‘ 𝐺 ) → dom 𝑒 = dom ( iEdg ‘ 𝐺 ) )
34 33 adantr ( ( 𝑒 = ( iEdg ‘ 𝐺 ) ∧ 𝑑 = ( iEdg ‘ 𝐻 ) ) → dom 𝑒 = dom ( iEdg ‘ 𝐺 ) )
35 dmeq ( 𝑑 = ( iEdg ‘ 𝐻 ) → dom 𝑑 = dom ( iEdg ‘ 𝐻 ) )
36 35 adantl ( ( 𝑒 = ( iEdg ‘ 𝐺 ) ∧ 𝑑 = ( iEdg ‘ 𝐻 ) ) → dom 𝑑 = dom ( iEdg ‘ 𝐻 ) )
37 32 34 36 f1oeq123d ( ( 𝑒 = ( iEdg ‘ 𝐺 ) ∧ 𝑑 = ( iEdg ‘ 𝐻 ) ) → ( 𝑗 : dom 𝑒1-1-onto→ dom 𝑑𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) )
38 fveq1 ( 𝑑 = ( iEdg ‘ 𝐻 ) → ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) )
39 fveq1 ( 𝑒 = ( iEdg ‘ 𝐺 ) → ( 𝑒𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) )
40 39 imaeq2d ( 𝑒 = ( iEdg ‘ 𝐺 ) → ( 𝑓 “ ( 𝑒𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) )
41 38 40 eqeqan12rd ( ( 𝑒 = ( iEdg ‘ 𝐺 ) ∧ 𝑑 = ( iEdg ‘ 𝐻 ) ) → ( ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) )
42 34 41 raleqbidv ( ( 𝑒 = ( iEdg ‘ 𝐺 ) ∧ 𝑑 = ( iEdg ‘ 𝐻 ) ) → ( ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) ↔ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) )
43 37 42 anbi12d ( ( 𝑒 = ( iEdg ‘ 𝐺 ) ∧ 𝑑 = ( iEdg ‘ 𝐻 ) ) → ( ( 𝑗 : dom 𝑒1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) ) ↔ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) )
44 43 adantll ( ( ( ( 𝑔 = 𝐺 = 𝐻 ) ∧ 𝑒 = ( iEdg ‘ 𝐺 ) ) ∧ 𝑑 = ( iEdg ‘ 𝐻 ) ) → ( ( 𝑗 : dom 𝑒1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) ) ↔ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) )
45 28 31 44 sbcied2 ( ( ( 𝑔 = 𝐺 = 𝐻 ) ∧ 𝑒 = ( iEdg ‘ 𝐺 ) ) → ( [ ( iEdg ‘ ) / 𝑑 ] ( 𝑗 : dom 𝑒1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) ) ↔ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) )
46 25 27 45 sbcied2 ( ( 𝑔 = 𝐺 = 𝐻 ) → ( [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ) / 𝑑 ] ( 𝑗 : dom 𝑒1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) ) ↔ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) )
47 biidd ( ( 𝑔 = 𝐺 = 𝐻 ) → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ↔ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) )
48 46 47 bitrd ( ( 𝑔 = 𝐺 = 𝐻 ) → ( [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ) / 𝑑 ] ( 𝑗 : dom 𝑒1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) ) ↔ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) )
49 48 exbidv ( ( 𝑔 = 𝐺 = 𝐻 ) → ( ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ) / 𝑑 ] ( 𝑗 : dom 𝑒1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) ) ↔ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) )
50 24 49 anbi12d ( ( 𝑔 = 𝐺 = 𝐻 ) → ( ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ) / 𝑑 ] ( 𝑗 : dom 𝑒1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) ) ) ↔ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) )
51 50 abbidv ( ( 𝑔 = 𝐺 = 𝐻 ) → { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ) / 𝑑 ] ( 𝑗 : dom 𝑒1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( 𝑒𝑖 ) ) ) ) } = { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) } )
52 5 7 9 18 51 elovmpod ( ( 𝐺𝑋𝐻𝑌𝐹𝑍 ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ↔ 𝐹 ∈ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) } ) )
53 id ( 𝑓 = 𝐹𝑓 = 𝐹 )
54 1 eqcomi ( Vtx ‘ 𝐺 ) = 𝑉
55 54 a1i ( 𝑓 = 𝐹 → ( Vtx ‘ 𝐺 ) = 𝑉 )
56 2 eqcomi ( Vtx ‘ 𝐻 ) = 𝑊
57 56 a1i ( 𝑓 = 𝐹 → ( Vtx ‘ 𝐻 ) = 𝑊 )
58 53 55 57 f1oeq123d ( 𝑓 = 𝐹 → ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ↔ 𝐹 : 𝑉1-1-onto𝑊 ) )
59 eqidd ( 𝑓 = 𝐹𝑗 = 𝑗 )
60 3 eqcomi ( iEdg ‘ 𝐺 ) = 𝐸
61 60 dmeqi dom ( iEdg ‘ 𝐺 ) = dom 𝐸
62 61 a1i ( 𝑓 = 𝐹 → dom ( iEdg ‘ 𝐺 ) = dom 𝐸 )
63 4 eqcomi ( iEdg ‘ 𝐻 ) = 𝐷
64 63 dmeqi dom ( iEdg ‘ 𝐻 ) = dom 𝐷
65 64 a1i ( 𝑓 = 𝐹 → dom ( iEdg ‘ 𝐻 ) = dom 𝐷 )
66 59 62 65 f1oeq123d ( 𝑓 = 𝐹 → ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ↔ 𝑗 : dom 𝐸1-1-onto→ dom 𝐷 ) )
67 63 fveq1i ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐷 ‘ ( 𝑗𝑖 ) )
68 67 a1i ( 𝑓 = 𝐹 → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐷 ‘ ( 𝑗𝑖 ) ) )
69 60 fveq1i ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( 𝐸𝑖 )
70 69 a1i ( 𝑓 = 𝐹 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( 𝐸𝑖 ) )
71 53 70 imaeq12d ( 𝑓 = 𝐹 → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐸𝑖 ) ) )
72 68 71 eqeq12d ( 𝑓 = 𝐹 → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ( 𝐷 ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( 𝐸𝑖 ) ) ) )
73 62 72 raleqbidv ( 𝑓 = 𝐹 → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ dom 𝐸 ( 𝐷 ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( 𝐸𝑖 ) ) ) )
74 66 73 anbi12d ( 𝑓 = 𝐹 → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ↔ ( 𝑗 : dom 𝐸1-1-onto→ dom 𝐷 ∧ ∀ 𝑖 ∈ dom 𝐸 ( 𝐷 ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( 𝐸𝑖 ) ) ) ) )
75 74 exbidv ( 𝑓 = 𝐹 → ( ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ↔ ∃ 𝑗 ( 𝑗 : dom 𝐸1-1-onto→ dom 𝐷 ∧ ∀ 𝑖 ∈ dom 𝐸 ( 𝐷 ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( 𝐸𝑖 ) ) ) ) )
76 58 75 anbi12d ( 𝑓 = 𝐹 → ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ↔ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom 𝐸1-1-onto→ dom 𝐷 ∧ ∀ 𝑖 ∈ dom 𝐸 ( 𝐷 ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( 𝐸𝑖 ) ) ) ) ) )
77 76 elabg ( 𝐹𝑍 → ( 𝐹 ∈ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) } ↔ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom 𝐸1-1-onto→ dom 𝐷 ∧ ∀ 𝑖 ∈ dom 𝐸 ( 𝐷 ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( 𝐸𝑖 ) ) ) ) ) )
78 77 3ad2ant3 ( ( 𝐺𝑋𝐻𝑌𝐹𝑍 ) → ( 𝐹 ∈ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) } ↔ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom 𝐸1-1-onto→ dom 𝐷 ∧ ∀ 𝑖 ∈ dom 𝐸 ( 𝐷 ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( 𝐸𝑖 ) ) ) ) ) )
79 52 78 bitrd ( ( 𝐺𝑋𝐻𝑌𝐹𝑍 ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom 𝐸1-1-onto→ dom 𝐷 ∧ ∀ 𝑖 ∈ dom 𝐸 ( 𝐷 ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( 𝐸𝑖 ) ) ) ) ) )