Step |
Hyp |
Ref |
Expression |
1 |
|
isgrim.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
isgrim.w |
⊢ 𝑊 = ( Vtx ‘ 𝐻 ) |
3 |
|
isgrim.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
4 |
|
isgrim.d |
⊢ 𝐷 = ( iEdg ‘ 𝐻 ) |
5 |
|
df-grim |
⊢ GraphIso = ( 𝑔 ∈ V , ℎ ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ) } ) |
6 |
|
elex |
⊢ ( 𝐺 ∈ 𝑋 → 𝐺 ∈ V ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) → 𝐺 ∈ V ) |
8 |
|
elex |
⊢ ( 𝐻 ∈ 𝑌 → 𝐻 ∈ V ) |
9 |
8
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) → 𝐻 ∈ V ) |
10 |
|
f1of |
⊢ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝑓 : ( Vtx ‘ 𝐺 ) ⟶ ( Vtx ‘ 𝐻 ) ) |
11 |
|
fvex |
⊢ ( Vtx ‘ 𝐻 ) ∈ V |
12 |
|
fvex |
⊢ ( Vtx ‘ 𝐺 ) ∈ V |
13 |
11 12
|
elmap |
⊢ ( 𝑓 ∈ ( ( Vtx ‘ 𝐻 ) ↑m ( Vtx ‘ 𝐺 ) ) ↔ 𝑓 : ( Vtx ‘ 𝐺 ) ⟶ ( Vtx ‘ 𝐻 ) ) |
14 |
10 13
|
sylibr |
⊢ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝑓 ∈ ( ( Vtx ‘ 𝐻 ) ↑m ( Vtx ‘ 𝐺 ) ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → 𝑓 ∈ ( ( Vtx ‘ 𝐻 ) ↑m ( Vtx ‘ 𝐺 ) ) ) |
16 |
|
ovex |
⊢ ( ( Vtx ‘ 𝐻 ) ↑m ( Vtx ‘ 𝐺 ) ) ∈ V |
17 |
15 16
|
abex |
⊢ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) } ∈ V |
18 |
17
|
a1i |
⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) → { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) } ∈ V ) |
19 |
|
eqidd |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → 𝑓 = 𝑓 ) |
20 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) |
22 |
|
fveq2 |
⊢ ( ℎ = 𝐻 → ( Vtx ‘ ℎ ) = ( Vtx ‘ 𝐻 ) ) |
23 |
22
|
adantl |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( Vtx ‘ ℎ ) = ( Vtx ‘ 𝐻 ) ) |
24 |
19 21 23
|
f1oeq123d |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ↔ 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ) |
25 |
|
fvexd |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( iEdg ‘ 𝑔 ) ∈ V ) |
26 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) |
28 |
|
fvexd |
⊢ ( ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) ∧ 𝑒 = ( iEdg ‘ 𝐺 ) ) → ( iEdg ‘ ℎ ) ∈ V ) |
29 |
|
fveq2 |
⊢ ( ℎ = 𝐻 → ( iEdg ‘ ℎ ) = ( iEdg ‘ 𝐻 ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( iEdg ‘ ℎ ) = ( iEdg ‘ 𝐻 ) ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) ∧ 𝑒 = ( iEdg ‘ 𝐺 ) ) → ( iEdg ‘ ℎ ) = ( iEdg ‘ 𝐻 ) ) |
32 |
|
eqidd |
⊢ ( ( 𝑒 = ( iEdg ‘ 𝐺 ) ∧ 𝑑 = ( iEdg ‘ 𝐻 ) ) → 𝑗 = 𝑗 ) |
33 |
|
dmeq |
⊢ ( 𝑒 = ( iEdg ‘ 𝐺 ) → dom 𝑒 = dom ( iEdg ‘ 𝐺 ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝑒 = ( iEdg ‘ 𝐺 ) ∧ 𝑑 = ( iEdg ‘ 𝐻 ) ) → dom 𝑒 = dom ( iEdg ‘ 𝐺 ) ) |
35 |
|
dmeq |
⊢ ( 𝑑 = ( iEdg ‘ 𝐻 ) → dom 𝑑 = dom ( iEdg ‘ 𝐻 ) ) |
36 |
35
|
adantl |
⊢ ( ( 𝑒 = ( iEdg ‘ 𝐺 ) ∧ 𝑑 = ( iEdg ‘ 𝐻 ) ) → dom 𝑑 = dom ( iEdg ‘ 𝐻 ) ) |
37 |
32 34 36
|
f1oeq123d |
⊢ ( ( 𝑒 = ( iEdg ‘ 𝐺 ) ∧ 𝑑 = ( iEdg ‘ 𝐻 ) ) → ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ↔ 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ) |
38 |
|
fveq1 |
⊢ ( 𝑑 = ( iEdg ‘ 𝐻 ) → ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) ) |
39 |
|
fveq1 |
⊢ ( 𝑒 = ( iEdg ‘ 𝐺 ) → ( 𝑒 ‘ 𝑖 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
40 |
39
|
imaeq2d |
⊢ ( 𝑒 = ( iEdg ‘ 𝐺 ) → ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
41 |
38 40
|
eqeqan12rd |
⊢ ( ( 𝑒 = ( iEdg ‘ 𝐺 ) ∧ 𝑑 = ( iEdg ‘ 𝐻 ) ) → ( ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
42 |
34 41
|
raleqbidv |
⊢ ( ( 𝑒 = ( iEdg ‘ 𝐺 ) ∧ 𝑑 = ( iEdg ‘ 𝐻 ) ) → ( ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
43 |
37 42
|
anbi12d |
⊢ ( ( 𝑒 = ( iEdg ‘ 𝐺 ) ∧ 𝑑 = ( iEdg ‘ 𝐻 ) ) → ( ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ↔ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
44 |
43
|
adantll |
⊢ ( ( ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) ∧ 𝑒 = ( iEdg ‘ 𝐺 ) ) ∧ 𝑑 = ( iEdg ‘ 𝐻 ) ) → ( ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ↔ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
45 |
28 31 44
|
sbcied2 |
⊢ ( ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) ∧ 𝑒 = ( iEdg ‘ 𝐺 ) ) → ( [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ↔ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
46 |
25 27 45
|
sbcied2 |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ↔ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
47 |
|
biidd |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ↔ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
48 |
46 47
|
bitrd |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ↔ ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
49 |
48
|
exbidv |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ↔ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
50 |
24 49
|
anbi12d |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → ( ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ) ↔ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) ) |
51 |
50
|
abbidv |
⊢ ( ( 𝑔 = 𝐺 ∧ ℎ = 𝐻 ) → { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝑔 ) –1-1-onto→ ( Vtx ‘ ℎ ) ∧ ∃ 𝑗 [ ( iEdg ‘ 𝑔 ) / 𝑒 ] [ ( iEdg ‘ ℎ ) / 𝑑 ] ( 𝑗 : dom 𝑒 –1-1-onto→ dom 𝑑 ∧ ∀ 𝑖 ∈ dom 𝑒 ( 𝑑 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝑒 ‘ 𝑖 ) ) ) ) } = { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) } ) |
52 |
5 7 9 18 51
|
elovmpod |
⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ↔ 𝐹 ∈ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) } ) ) |
53 |
|
id |
⊢ ( 𝑓 = 𝐹 → 𝑓 = 𝐹 ) |
54 |
1
|
eqcomi |
⊢ ( Vtx ‘ 𝐺 ) = 𝑉 |
55 |
54
|
a1i |
⊢ ( 𝑓 = 𝐹 → ( Vtx ‘ 𝐺 ) = 𝑉 ) |
56 |
2
|
eqcomi |
⊢ ( Vtx ‘ 𝐻 ) = 𝑊 |
57 |
56
|
a1i |
⊢ ( 𝑓 = 𝐹 → ( Vtx ‘ 𝐻 ) = 𝑊 ) |
58 |
53 55 57
|
f1oeq123d |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ↔ 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) ) |
59 |
|
eqidd |
⊢ ( 𝑓 = 𝐹 → 𝑗 = 𝑗 ) |
60 |
3
|
eqcomi |
⊢ ( iEdg ‘ 𝐺 ) = 𝐸 |
61 |
60
|
dmeqi |
⊢ dom ( iEdg ‘ 𝐺 ) = dom 𝐸 |
62 |
61
|
a1i |
⊢ ( 𝑓 = 𝐹 → dom ( iEdg ‘ 𝐺 ) = dom 𝐸 ) |
63 |
4
|
eqcomi |
⊢ ( iEdg ‘ 𝐻 ) = 𝐷 |
64 |
63
|
dmeqi |
⊢ dom ( iEdg ‘ 𝐻 ) = dom 𝐷 |
65 |
64
|
a1i |
⊢ ( 𝑓 = 𝐹 → dom ( iEdg ‘ 𝐻 ) = dom 𝐷 ) |
66 |
59 62 65
|
f1oeq123d |
⊢ ( 𝑓 = 𝐹 → ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ↔ 𝑗 : dom 𝐸 –1-1-onto→ dom 𝐷 ) ) |
67 |
63
|
fveq1i |
⊢ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐷 ‘ ( 𝑗 ‘ 𝑖 ) ) |
68 |
67
|
a1i |
⊢ ( 𝑓 = 𝐹 → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐷 ‘ ( 𝑗 ‘ 𝑖 ) ) ) |
69 |
60
|
fveq1i |
⊢ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) |
70 |
69
|
a1i |
⊢ ( 𝑓 = 𝐹 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ) |
71 |
53 70
|
imaeq12d |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐸 ‘ 𝑖 ) ) ) |
72 |
68 71
|
eqeq12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ( 𝐷 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐸 ‘ 𝑖 ) ) ) ) |
73 |
62 72
|
raleqbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ dom 𝐸 ( 𝐷 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐸 ‘ 𝑖 ) ) ) ) |
74 |
66 73
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ↔ ( 𝑗 : dom 𝐸 –1-1-onto→ dom 𝐷 ∧ ∀ 𝑖 ∈ dom 𝐸 ( 𝐷 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐸 ‘ 𝑖 ) ) ) ) ) |
75 |
74
|
exbidv |
⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ↔ ∃ 𝑗 ( 𝑗 : dom 𝐸 –1-1-onto→ dom 𝐷 ∧ ∀ 𝑖 ∈ dom 𝐸 ( 𝐷 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐸 ‘ 𝑖 ) ) ) ) ) |
76 |
58 75
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom 𝐸 –1-1-onto→ dom 𝐷 ∧ ∀ 𝑖 ∈ dom 𝐸 ( 𝐷 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) |
77 |
76
|
elabg |
⊢ ( 𝐹 ∈ 𝑍 → ( 𝐹 ∈ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) } ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom 𝐸 –1-1-onto→ dom 𝐷 ∧ ∀ 𝑖 ∈ dom 𝐸 ( 𝐷 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) |
78 |
77
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) → ( 𝐹 ∈ { 𝑓 ∣ ( 𝑓 : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) } ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom 𝐸 –1-1-onto→ dom 𝐷 ∧ ∀ 𝑖 ∈ dom 𝐸 ( 𝐷 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) |
79 |
52 78
|
bitrd |
⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍 ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom 𝐸 –1-1-onto→ dom 𝐷 ∧ ∀ 𝑖 ∈ dom 𝐸 ( 𝐷 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) |