| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isgrim.v |
|- V = ( Vtx ` G ) |
| 2 |
|
isgrim.w |
|- W = ( Vtx ` H ) |
| 3 |
|
isgrim.e |
|- E = ( iEdg ` G ) |
| 4 |
|
isgrim.d |
|- D = ( iEdg ` H ) |
| 5 |
|
df-grim |
|- GraphIso = ( g e. _V , h e. _V |-> { f | ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ E. j [. ( iEdg ` g ) / e ]. [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) ) } ) |
| 6 |
|
elex |
|- ( G e. X -> G e. _V ) |
| 7 |
6
|
3ad2ant1 |
|- ( ( G e. X /\ H e. Y /\ F e. Z ) -> G e. _V ) |
| 8 |
|
elex |
|- ( H e. Y -> H e. _V ) |
| 9 |
8
|
3ad2ant2 |
|- ( ( G e. X /\ H e. Y /\ F e. Z ) -> H e. _V ) |
| 10 |
|
f1of |
|- ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> f : ( Vtx ` G ) --> ( Vtx ` H ) ) |
| 11 |
|
fvex |
|- ( Vtx ` H ) e. _V |
| 12 |
|
fvex |
|- ( Vtx ` G ) e. _V |
| 13 |
11 12
|
elmap |
|- ( f e. ( ( Vtx ` H ) ^m ( Vtx ` G ) ) <-> f : ( Vtx ` G ) --> ( Vtx ` H ) ) |
| 14 |
10 13
|
sylibr |
|- ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> f e. ( ( Vtx ` H ) ^m ( Vtx ` G ) ) ) |
| 15 |
14
|
adantr |
|- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) ) -> f e. ( ( Vtx ` H ) ^m ( Vtx ` G ) ) ) |
| 16 |
|
ovex |
|- ( ( Vtx ` H ) ^m ( Vtx ` G ) ) e. _V |
| 17 |
15 16
|
abex |
|- { f | ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) ) } e. _V |
| 18 |
17
|
a1i |
|- ( ( G e. X /\ H e. Y /\ F e. Z ) -> { f | ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) ) } e. _V ) |
| 19 |
|
eqidd |
|- ( ( g = G /\ h = H ) -> f = f ) |
| 20 |
|
fveq2 |
|- ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) |
| 21 |
20
|
adantr |
|- ( ( g = G /\ h = H ) -> ( Vtx ` g ) = ( Vtx ` G ) ) |
| 22 |
|
fveq2 |
|- ( h = H -> ( Vtx ` h ) = ( Vtx ` H ) ) |
| 23 |
22
|
adantl |
|- ( ( g = G /\ h = H ) -> ( Vtx ` h ) = ( Vtx ` H ) ) |
| 24 |
19 21 23
|
f1oeq123d |
|- ( ( g = G /\ h = H ) -> ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) <-> f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) ) |
| 25 |
|
fvexd |
|- ( ( g = G /\ h = H ) -> ( iEdg ` g ) e. _V ) |
| 26 |
|
fveq2 |
|- ( g = G -> ( iEdg ` g ) = ( iEdg ` G ) ) |
| 27 |
26
|
adantr |
|- ( ( g = G /\ h = H ) -> ( iEdg ` g ) = ( iEdg ` G ) ) |
| 28 |
|
fvexd |
|- ( ( ( g = G /\ h = H ) /\ e = ( iEdg ` G ) ) -> ( iEdg ` h ) e. _V ) |
| 29 |
|
fveq2 |
|- ( h = H -> ( iEdg ` h ) = ( iEdg ` H ) ) |
| 30 |
29
|
adantl |
|- ( ( g = G /\ h = H ) -> ( iEdg ` h ) = ( iEdg ` H ) ) |
| 31 |
30
|
adantr |
|- ( ( ( g = G /\ h = H ) /\ e = ( iEdg ` G ) ) -> ( iEdg ` h ) = ( iEdg ` H ) ) |
| 32 |
|
eqidd |
|- ( ( e = ( iEdg ` G ) /\ d = ( iEdg ` H ) ) -> j = j ) |
| 33 |
|
dmeq |
|- ( e = ( iEdg ` G ) -> dom e = dom ( iEdg ` G ) ) |
| 34 |
33
|
adantr |
|- ( ( e = ( iEdg ` G ) /\ d = ( iEdg ` H ) ) -> dom e = dom ( iEdg ` G ) ) |
| 35 |
|
dmeq |
|- ( d = ( iEdg ` H ) -> dom d = dom ( iEdg ` H ) ) |
| 36 |
35
|
adantl |
|- ( ( e = ( iEdg ` G ) /\ d = ( iEdg ` H ) ) -> dom d = dom ( iEdg ` H ) ) |
| 37 |
32 34 36
|
f1oeq123d |
|- ( ( e = ( iEdg ` G ) /\ d = ( iEdg ` H ) ) -> ( j : dom e -1-1-onto-> dom d <-> j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) ) |
| 38 |
|
fveq1 |
|- ( d = ( iEdg ` H ) -> ( d ` ( j ` i ) ) = ( ( iEdg ` H ) ` ( j ` i ) ) ) |
| 39 |
|
fveq1 |
|- ( e = ( iEdg ` G ) -> ( e ` i ) = ( ( iEdg ` G ) ` i ) ) |
| 40 |
39
|
imaeq2d |
|- ( e = ( iEdg ` G ) -> ( f " ( e ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) |
| 41 |
38 40
|
eqeqan12rd |
|- ( ( e = ( iEdg ` G ) /\ d = ( iEdg ` H ) ) -> ( ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) <-> ( ( iEdg ` H ) ` ( j ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) ) |
| 42 |
34 41
|
raleqbidv |
|- ( ( e = ( iEdg ` G ) /\ d = ( iEdg ` H ) ) -> ( A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) <-> A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) ) |
| 43 |
37 42
|
anbi12d |
|- ( ( e = ( iEdg ` G ) /\ d = ( iEdg ` H ) ) -> ( ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) <-> ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 44 |
43
|
adantll |
|- ( ( ( ( g = G /\ h = H ) /\ e = ( iEdg ` G ) ) /\ d = ( iEdg ` H ) ) -> ( ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) <-> ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 45 |
28 31 44
|
sbcied2 |
|- ( ( ( g = G /\ h = H ) /\ e = ( iEdg ` G ) ) -> ( [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) <-> ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 46 |
25 27 45
|
sbcied2 |
|- ( ( g = G /\ h = H ) -> ( [. ( iEdg ` g ) / e ]. [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) <-> ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 47 |
|
biidd |
|- ( ( g = G /\ h = H ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) <-> ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 48 |
46 47
|
bitrd |
|- ( ( g = G /\ h = H ) -> ( [. ( iEdg ` g ) / e ]. [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) <-> ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 49 |
48
|
exbidv |
|- ( ( g = G /\ h = H ) -> ( E. j [. ( iEdg ` g ) / e ]. [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) <-> E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 50 |
24 49
|
anbi12d |
|- ( ( g = G /\ h = H ) -> ( ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ E. j [. ( iEdg ` g ) / e ]. [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) ) <-> ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) ) ) ) |
| 51 |
50
|
abbidv |
|- ( ( g = G /\ h = H ) -> { f | ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ E. j [. ( iEdg ` g ) / e ]. [. ( iEdg ` h ) / d ]. ( j : dom e -1-1-onto-> dom d /\ A. i e. dom e ( d ` ( j ` i ) ) = ( f " ( e ` i ) ) ) ) } = { f | ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) ) } ) |
| 52 |
5 7 9 18 51
|
elovmpod |
|- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( F e. ( G GraphIso H ) <-> F e. { f | ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) ) } ) ) |
| 53 |
|
id |
|- ( f = F -> f = F ) |
| 54 |
1
|
eqcomi |
|- ( Vtx ` G ) = V |
| 55 |
54
|
a1i |
|- ( f = F -> ( Vtx ` G ) = V ) |
| 56 |
2
|
eqcomi |
|- ( Vtx ` H ) = W |
| 57 |
56
|
a1i |
|- ( f = F -> ( Vtx ` H ) = W ) |
| 58 |
53 55 57
|
f1oeq123d |
|- ( f = F -> ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) <-> F : V -1-1-onto-> W ) ) |
| 59 |
|
eqidd |
|- ( f = F -> j = j ) |
| 60 |
3
|
eqcomi |
|- ( iEdg ` G ) = E |
| 61 |
60
|
dmeqi |
|- dom ( iEdg ` G ) = dom E |
| 62 |
61
|
a1i |
|- ( f = F -> dom ( iEdg ` G ) = dom E ) |
| 63 |
4
|
eqcomi |
|- ( iEdg ` H ) = D |
| 64 |
63
|
dmeqi |
|- dom ( iEdg ` H ) = dom D |
| 65 |
64
|
a1i |
|- ( f = F -> dom ( iEdg ` H ) = dom D ) |
| 66 |
59 62 65
|
f1oeq123d |
|- ( f = F -> ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) <-> j : dom E -1-1-onto-> dom D ) ) |
| 67 |
63
|
fveq1i |
|- ( ( iEdg ` H ) ` ( j ` i ) ) = ( D ` ( j ` i ) ) |
| 68 |
67
|
a1i |
|- ( f = F -> ( ( iEdg ` H ) ` ( j ` i ) ) = ( D ` ( j ` i ) ) ) |
| 69 |
60
|
fveq1i |
|- ( ( iEdg ` G ) ` i ) = ( E ` i ) |
| 70 |
69
|
a1i |
|- ( f = F -> ( ( iEdg ` G ) ` i ) = ( E ` i ) ) |
| 71 |
53 70
|
imaeq12d |
|- ( f = F -> ( f " ( ( iEdg ` G ) ` i ) ) = ( F " ( E ` i ) ) ) |
| 72 |
68 71
|
eqeq12d |
|- ( f = F -> ( ( ( iEdg ` H ) ` ( j ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) <-> ( D ` ( j ` i ) ) = ( F " ( E ` i ) ) ) ) |
| 73 |
62 72
|
raleqbidv |
|- ( f = F -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) <-> A. i e. dom E ( D ` ( j ` i ) ) = ( F " ( E ` i ) ) ) ) |
| 74 |
66 73
|
anbi12d |
|- ( f = F -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) <-> ( j : dom E -1-1-onto-> dom D /\ A. i e. dom E ( D ` ( j ` i ) ) = ( F " ( E ` i ) ) ) ) ) |
| 75 |
74
|
exbidv |
|- ( f = F -> ( E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) <-> E. j ( j : dom E -1-1-onto-> dom D /\ A. i e. dom E ( D ` ( j ` i ) ) = ( F " ( E ` i ) ) ) ) ) |
| 76 |
58 75
|
anbi12d |
|- ( f = F -> ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) ) <-> ( F : V -1-1-onto-> W /\ E. j ( j : dom E -1-1-onto-> dom D /\ A. i e. dom E ( D ` ( j ` i ) ) = ( F " ( E ` i ) ) ) ) ) ) |
| 77 |
76
|
elabg |
|- ( F e. Z -> ( F e. { f | ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) ) } <-> ( F : V -1-1-onto-> W /\ E. j ( j : dom E -1-1-onto-> dom D /\ A. i e. dom E ( D ` ( j ` i ) ) = ( F " ( E ` i ) ) ) ) ) ) |
| 78 |
77
|
3ad2ant3 |
|- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( F e. { f | ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( f " ( ( iEdg ` G ) ` i ) ) ) ) } <-> ( F : V -1-1-onto-> W /\ E. j ( j : dom E -1-1-onto-> dom D /\ A. i e. dom E ( D ` ( j ` i ) ) = ( F " ( E ` i ) ) ) ) ) ) |
| 79 |
52 78
|
bitrd |
|- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( F e. ( G GraphIso H ) <-> ( F : V -1-1-onto-> W /\ E. j ( j : dom E -1-1-onto-> dom D /\ A. i e. dom E ( D ` ( j ` i ) ) = ( F " ( E ` i ) ) ) ) ) ) |