Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015) Variant of elovmpo in deduction form. (Revised by AV, 20-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elovmpod.o | |- O = ( a e. A , b e. B |-> C ) |
|
| elovmpod.x | |- ( ph -> X e. A ) |
||
| elovmpod.y | |- ( ph -> Y e. B ) |
||
| elovmpod.d | |- ( ph -> D e. V ) |
||
| elovmpod.c | |- ( ( a = X /\ b = Y ) -> C = D ) |
||
| Assertion | elovmpod | |- ( ph -> ( E e. ( X O Y ) <-> E e. D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elovmpod.o | |- O = ( a e. A , b e. B |-> C ) |
|
| 2 | elovmpod.x | |- ( ph -> X e. A ) |
|
| 3 | elovmpod.y | |- ( ph -> Y e. B ) |
|
| 4 | elovmpod.d | |- ( ph -> D e. V ) |
|
| 5 | elovmpod.c | |- ( ( a = X /\ b = Y ) -> C = D ) |
|
| 6 | 1 | a1i | |- ( ph -> O = ( a e. A , b e. B |-> C ) ) |
| 7 | 5 | adantl | |- ( ( ph /\ ( a = X /\ b = Y ) ) -> C = D ) |
| 8 | 6 7 2 3 4 | ovmpod | |- ( ph -> ( X O Y ) = D ) |
| 9 | 8 | eleq2d | |- ( ph -> ( E e. ( X O Y ) <-> E e. D ) ) |