Metamath Proof Explorer


Theorem isgrim

Description: An isomorphism of graphs is a bijection between their vertices that preserves adjacency. (Contributed by AV, 19-Apr-2025)

Ref Expression
Hypotheses isgrim.v V = Vtx G
isgrim.w W = Vtx H
isgrim.e E = iEdg G
isgrim.d D = iEdg H
Assertion isgrim G X H Y F Z F G GraphIso H F : V 1-1 onto W j j : dom E 1-1 onto dom D i dom E D j i = F E i

Proof

Step Hyp Ref Expression
1 isgrim.v V = Vtx G
2 isgrim.w W = Vtx H
3 isgrim.e E = iEdg G
4 isgrim.d D = iEdg H
5 df-grim GraphIso = g V , h V f | f : Vtx g 1-1 onto Vtx h j [˙ iEdg g / e]˙ [˙ iEdg h / d]˙ j : dom e 1-1 onto dom d i dom e d j i = f e i
6 elex G X G V
7 6 3ad2ant1 G X H Y F Z G V
8 elex H Y H V
9 8 3ad2ant2 G X H Y F Z H V
10 f1of f : Vtx G 1-1 onto Vtx H f : Vtx G Vtx H
11 fvex Vtx H V
12 fvex Vtx G V
13 11 12 elmap f Vtx H Vtx G f : Vtx G Vtx H
14 10 13 sylibr f : Vtx G 1-1 onto Vtx H f Vtx H Vtx G
15 14 adantr f : Vtx G 1-1 onto Vtx H j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = f iEdg G i f Vtx H Vtx G
16 ovex Vtx H Vtx G V
17 15 16 abex f | f : Vtx G 1-1 onto Vtx H j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = f iEdg G i V
18 17 a1i G X H Y F Z f | f : Vtx G 1-1 onto Vtx H j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = f iEdg G i V
19 eqidd g = G h = H f = f
20 fveq2 g = G Vtx g = Vtx G
21 20 adantr g = G h = H Vtx g = Vtx G
22 fveq2 h = H Vtx h = Vtx H
23 22 adantl g = G h = H Vtx h = Vtx H
24 19 21 23 f1oeq123d g = G h = H f : Vtx g 1-1 onto Vtx h f : Vtx G 1-1 onto Vtx H
25 fvexd g = G h = H iEdg g V
26 fveq2 g = G iEdg g = iEdg G
27 26 adantr g = G h = H iEdg g = iEdg G
28 fvexd g = G h = H e = iEdg G iEdg h V
29 fveq2 h = H iEdg h = iEdg H
30 29 adantl g = G h = H iEdg h = iEdg H
31 30 adantr g = G h = H e = iEdg G iEdg h = iEdg H
32 eqidd e = iEdg G d = iEdg H j = j
33 dmeq e = iEdg G dom e = dom iEdg G
34 33 adantr e = iEdg G d = iEdg H dom e = dom iEdg G
35 dmeq d = iEdg H dom d = dom iEdg H
36 35 adantl e = iEdg G d = iEdg H dom d = dom iEdg H
37 32 34 36 f1oeq123d e = iEdg G d = iEdg H j : dom e 1-1 onto dom d j : dom iEdg G 1-1 onto dom iEdg H
38 fveq1 d = iEdg H d j i = iEdg H j i
39 fveq1 e = iEdg G e i = iEdg G i
40 39 imaeq2d e = iEdg G f e i = f iEdg G i
41 38 40 eqeqan12rd e = iEdg G d = iEdg H d j i = f e i iEdg H j i = f iEdg G i
42 34 41 raleqbidv e = iEdg G d = iEdg H i dom e d j i = f e i i dom iEdg G iEdg H j i = f iEdg G i
43 37 42 anbi12d e = iEdg G d = iEdg H j : dom e 1-1 onto dom d i dom e d j i = f e i j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = f iEdg G i
44 43 adantll g = G h = H e = iEdg G d = iEdg H j : dom e 1-1 onto dom d i dom e d j i = f e i j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = f iEdg G i
45 28 31 44 sbcied2 g = G h = H e = iEdg G [˙ iEdg h / d]˙ j : dom e 1-1 onto dom d i dom e d j i = f e i j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = f iEdg G i
46 25 27 45 sbcied2 g = G h = H [˙ iEdg g / e]˙ [˙ iEdg h / d]˙ j : dom e 1-1 onto dom d i dom e d j i = f e i j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = f iEdg G i
47 biidd g = G h = H j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = f iEdg G i j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = f iEdg G i
48 46 47 bitrd g = G h = H [˙ iEdg g / e]˙ [˙ iEdg h / d]˙ j : dom e 1-1 onto dom d i dom e d j i = f e i j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = f iEdg G i
49 48 exbidv g = G h = H j [˙ iEdg g / e]˙ [˙ iEdg h / d]˙ j : dom e 1-1 onto dom d i dom e d j i = f e i j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = f iEdg G i
50 24 49 anbi12d g = G h = H f : Vtx g 1-1 onto Vtx h j [˙ iEdg g / e]˙ [˙ iEdg h / d]˙ j : dom e 1-1 onto dom d i dom e d j i = f e i f : Vtx G 1-1 onto Vtx H j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = f iEdg G i
51 50 abbidv g = G h = H f | f : Vtx g 1-1 onto Vtx h j [˙ iEdg g / e]˙ [˙ iEdg h / d]˙ j : dom e 1-1 onto dom d i dom e d j i = f e i = f | f : Vtx G 1-1 onto Vtx H j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = f iEdg G i
52 5 7 9 18 51 elovmpod G X H Y F Z F G GraphIso H F f | f : Vtx G 1-1 onto Vtx H j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = f iEdg G i
53 id f = F f = F
54 1 eqcomi Vtx G = V
55 54 a1i f = F Vtx G = V
56 2 eqcomi Vtx H = W
57 56 a1i f = F Vtx H = W
58 53 55 57 f1oeq123d f = F f : Vtx G 1-1 onto Vtx H F : V 1-1 onto W
59 eqidd f = F j = j
60 3 eqcomi iEdg G = E
61 60 dmeqi dom iEdg G = dom E
62 61 a1i f = F dom iEdg G = dom E
63 4 eqcomi iEdg H = D
64 63 dmeqi dom iEdg H = dom D
65 64 a1i f = F dom iEdg H = dom D
66 59 62 65 f1oeq123d f = F j : dom iEdg G 1-1 onto dom iEdg H j : dom E 1-1 onto dom D
67 63 fveq1i iEdg H j i = D j i
68 67 a1i f = F iEdg H j i = D j i
69 60 fveq1i iEdg G i = E i
70 69 a1i f = F iEdg G i = E i
71 53 70 imaeq12d f = F f iEdg G i = F E i
72 68 71 eqeq12d f = F iEdg H j i = f iEdg G i D j i = F E i
73 62 72 raleqbidv f = F i dom iEdg G iEdg H j i = f iEdg G i i dom E D j i = F E i
74 66 73 anbi12d f = F j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = f iEdg G i j : dom E 1-1 onto dom D i dom E D j i = F E i
75 74 exbidv f = F j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = f iEdg G i j j : dom E 1-1 onto dom D i dom E D j i = F E i
76 58 75 anbi12d f = F f : Vtx G 1-1 onto Vtx H j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = f iEdg G i F : V 1-1 onto W j j : dom E 1-1 onto dom D i dom E D j i = F E i
77 76 elabg F Z F f | f : Vtx G 1-1 onto Vtx H j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = f iEdg G i F : V 1-1 onto W j j : dom E 1-1 onto dom D i dom E D j i = F E i
78 77 3ad2ant3 G X H Y F Z F f | f : Vtx G 1-1 onto Vtx H j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = f iEdg G i F : V 1-1 onto W j j : dom E 1-1 onto dom D i dom E D j i = F E i
79 52 78 bitrd G X H Y F Z F G GraphIso H F : V 1-1 onto W j j : dom E 1-1 onto dom D i dom E D j i = F E i