Step |
Hyp |
Ref |
Expression |
1 |
|
isgrim.v |
|
2 |
|
isgrim.w |
|
3 |
|
isgrim.e |
|
4 |
|
isgrim.d |
|
5 |
|
df-grim |
|
6 |
|
elex |
|
7 |
6
|
3ad2ant1 |
|
8 |
|
elex |
|
9 |
8
|
3ad2ant2 |
|
10 |
|
f1of |
|
11 |
|
fvex |
|
12 |
|
fvex |
|
13 |
11 12
|
elmap |
|
14 |
10 13
|
sylibr |
|
15 |
14
|
adantr |
|
16 |
|
ovex |
|
17 |
15 16
|
abex |
|
18 |
17
|
a1i |
|
19 |
|
eqidd |
|
20 |
|
fveq2 |
|
21 |
20
|
adantr |
|
22 |
|
fveq2 |
|
23 |
22
|
adantl |
|
24 |
19 21 23
|
f1oeq123d |
|
25 |
|
fvexd |
|
26 |
|
fveq2 |
|
27 |
26
|
adantr |
|
28 |
|
fvexd |
|
29 |
|
fveq2 |
|
30 |
29
|
adantl |
|
31 |
30
|
adantr |
|
32 |
|
eqidd |
|
33 |
|
dmeq |
|
34 |
33
|
adantr |
|
35 |
|
dmeq |
|
36 |
35
|
adantl |
|
37 |
32 34 36
|
f1oeq123d |
|
38 |
|
fveq1 |
|
39 |
|
fveq1 |
|
40 |
39
|
imaeq2d |
|
41 |
38 40
|
eqeqan12rd |
|
42 |
34 41
|
raleqbidv |
|
43 |
37 42
|
anbi12d |
|
44 |
43
|
adantll |
|
45 |
28 31 44
|
sbcied2 |
|
46 |
25 27 45
|
sbcied2 |
|
47 |
|
biidd |
|
48 |
46 47
|
bitrd |
|
49 |
48
|
exbidv |
|
50 |
24 49
|
anbi12d |
|
51 |
50
|
abbidv |
|
52 |
5 7 9 18 51
|
elovmpod |
|
53 |
|
id |
|
54 |
1
|
eqcomi |
|
55 |
54
|
a1i |
|
56 |
2
|
eqcomi |
|
57 |
56
|
a1i |
|
58 |
53 55 57
|
f1oeq123d |
|
59 |
|
eqidd |
|
60 |
3
|
eqcomi |
|
61 |
60
|
dmeqi |
|
62 |
61
|
a1i |
|
63 |
4
|
eqcomi |
|
64 |
63
|
dmeqi |
|
65 |
64
|
a1i |
|
66 |
59 62 65
|
f1oeq123d |
|
67 |
63
|
fveq1i |
|
68 |
67
|
a1i |
|
69 |
60
|
fveq1i |
|
70 |
69
|
a1i |
|
71 |
53 70
|
imaeq12d |
|
72 |
68 71
|
eqeq12d |
|
73 |
62 72
|
raleqbidv |
|
74 |
66 73
|
anbi12d |
|
75 |
74
|
exbidv |
|
76 |
58 75
|
anbi12d |
|
77 |
76
|
elabg |
|
78 |
77
|
3ad2ant3 |
|
79 |
52 78
|
bitrd |
|