Metamath Proof Explorer


Theorem grimprop

Description: Properties of an isomorphism of graphs. (Contributed by AV, 29-Apr-2025)

Ref Expression
Hypotheses grimprop.v V = Vtx G
grimprop.w W = Vtx H
grimprop.e E = iEdg G
grimprop.d D = iEdg H
Assertion grimprop F G GraphIso H F : V 1-1 onto W j j : dom E 1-1 onto dom D i dom E D j i = F E i

Proof

Step Hyp Ref Expression
1 grimprop.v V = Vtx G
2 grimprop.w W = Vtx H
3 grimprop.e E = iEdg G
4 grimprop.d D = iEdg H
5 grimdmrel Rel dom GraphIso
6 5 ovrcl F G GraphIso H G V H V
7 6 simpld F G GraphIso H G V
8 6 simprd F G GraphIso H H V
9 id F G GraphIso H F G GraphIso H
10 7 8 9 3jca F G GraphIso H G V H V F G GraphIso H
11 1 2 3 4 isgrim G V H V F G GraphIso H F G GraphIso H F : V 1-1 onto W j j : dom E 1-1 onto dom D i dom E D j i = F E i
12 11 biimpd G V H V F G GraphIso H F G GraphIso H F : V 1-1 onto W j j : dom E 1-1 onto dom D i dom E D j i = F E i
13 10 12 mpcom F G GraphIso H F : V 1-1 onto W j j : dom E 1-1 onto dom D i dom E D j i = F E i