Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Graph theory (extension)
Isomorphisms of graphs
grimprop
Next ⟩
grimf1o
Metamath Proof Explorer
Ascii
Unicode
Theorem
grimprop
Description:
Properties of an isomorphism of graphs.
(Contributed by
AV
, 29-Apr-2025)
Ref
Expression
Hypotheses
grimprop.v
⊢
V
=
Vtx
⁡
G
grimprop.w
⊢
W
=
Vtx
⁡
H
grimprop.e
⊢
E
=
iEdg
⁡
G
grimprop.d
⊢
D
=
iEdg
⁡
H
Assertion
grimprop
⊢
F
∈
G
GraphIso
H
→
F
:
V
⟶
1-1 onto
W
∧
∃
j
j
:
dom
⁡
E
⟶
1-1 onto
dom
⁡
D
∧
∀
i
∈
dom
⁡
E
D
⁡
j
⁡
i
=
F
E
⁡
i
Proof
Step
Hyp
Ref
Expression
1
grimprop.v
⊢
V
=
Vtx
⁡
G
2
grimprop.w
⊢
W
=
Vtx
⁡
H
3
grimprop.e
⊢
E
=
iEdg
⁡
G
4
grimprop.d
⊢
D
=
iEdg
⁡
H
5
grimdmrel
⊢
Rel
⁡
dom
⁡
GraphIso
6
5
ovrcl
⊢
F
∈
G
GraphIso
H
→
G
∈
V
∧
H
∈
V
7
6
simpld
⊢
F
∈
G
GraphIso
H
→
G
∈
V
8
6
simprd
⊢
F
∈
G
GraphIso
H
→
H
∈
V
9
id
⊢
F
∈
G
GraphIso
H
→
F
∈
G
GraphIso
H
10
7
8
9
3jca
⊢
F
∈
G
GraphIso
H
→
G
∈
V
∧
H
∈
V
∧
F
∈
G
GraphIso
H
11
1
2
3
4
isgrim
⊢
G
∈
V
∧
H
∈
V
∧
F
∈
G
GraphIso
H
→
F
∈
G
GraphIso
H
↔
F
:
V
⟶
1-1 onto
W
∧
∃
j
j
:
dom
⁡
E
⟶
1-1 onto
dom
⁡
D
∧
∀
i
∈
dom
⁡
E
D
⁡
j
⁡
i
=
F
E
⁡
i
12
11
biimpd
⊢
G
∈
V
∧
H
∈
V
∧
F
∈
G
GraphIso
H
→
F
∈
G
GraphIso
H
→
F
:
V
⟶
1-1 onto
W
∧
∃
j
j
:
dom
⁡
E
⟶
1-1 onto
dom
⁡
D
∧
∀
i
∈
dom
⁡
E
D
⁡
j
⁡
i
=
F
E
⁡
i
13
10
12
mpcom
⊢
F
∈
G
GraphIso
H
→
F
:
V
⟶
1-1 onto
W
∧
∃
j
j
:
dom
⁡
E
⟶
1-1 onto
dom
⁡
D
∧
∀
i
∈
dom
⁡
E
D
⁡
j
⁡
i
=
F
E
⁡
i