Step |
Hyp |
Ref |
Expression |
1 |
|
grimprop.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
grimprop.w |
⊢ 𝑊 = ( Vtx ‘ 𝐻 ) |
3 |
|
grimprop.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
4 |
|
grimprop.d |
⊢ 𝐷 = ( iEdg ‘ 𝐻 ) |
5 |
|
grimdmrel |
⊢ Rel dom GraphIso |
6 |
5
|
ovrcl |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) |
7 |
6
|
simpld |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐺 ∈ V ) |
8 |
6
|
simprd |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐻 ∈ V ) |
9 |
|
id |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) |
10 |
7 8 9
|
3jca |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) ) |
11 |
1 2 3 4
|
isgrim |
⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom 𝐸 –1-1-onto→ dom 𝐷 ∧ ∀ 𝑖 ∈ dom 𝐸 ( 𝐷 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) |
12 |
11
|
biimpd |
⊢ ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ) → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom 𝐸 –1-1-onto→ dom 𝐷 ∧ ∀ 𝑖 ∈ dom 𝐸 ( 𝐷 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐸 ‘ 𝑖 ) ) ) ) ) ) |
13 |
10 12
|
mpcom |
⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom 𝐸 –1-1-onto→ dom 𝐷 ∧ ∀ 𝑖 ∈ dom 𝐸 ( 𝐷 ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐸 ‘ 𝑖 ) ) ) ) ) |