Description: An isomorphism of graphs is a bijection between their vertices. (Contributed by AV, 29-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grimprop.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
grimprop.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | ||
Assertion | grimf1o | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grimprop.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
2 | grimprop.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | |
3 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
4 | eqid | ⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) | |
5 | 1 2 3 4 | grimprop | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
6 | 5 | simpld | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) |