Metamath Proof Explorer


Theorem grimf1o

Description: An isomorphism of graphs is a bijection between their vertices. (Contributed by AV, 29-Apr-2025)

Ref Expression
Hypotheses grimprop.v 𝑉 = ( Vtx ‘ 𝐺 )
grimprop.w 𝑊 = ( Vtx ‘ 𝐻 )
Assertion grimf1o ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐹 : 𝑉1-1-onto𝑊 )

Proof

Step Hyp Ref Expression
1 grimprop.v 𝑉 = ( Vtx ‘ 𝐺 )
2 grimprop.w 𝑊 = ( Vtx ‘ 𝐻 )
3 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
4 eqid ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 )
5 1 2 3 4 grimprop ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) )
6 5 simpld ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → 𝐹 : 𝑉1-1-onto𝑊 )