Description: An isomorphism of graphs is a bijection between their vertices. (Contributed by AV, 29-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grimprop.v | |- V = ( Vtx ` G ) |
|
grimprop.w | |- W = ( Vtx ` H ) |
||
Assertion | grimf1o | |- ( F e. ( G GraphIso H ) -> F : V -1-1-onto-> W ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grimprop.v | |- V = ( Vtx ` G ) |
|
2 | grimprop.w | |- W = ( Vtx ` H ) |
|
3 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
4 | eqid | |- ( iEdg ` H ) = ( iEdg ` H ) |
|
5 | 1 2 3 4 | grimprop | |- ( F e. ( G GraphIso H ) -> ( F : V -1-1-onto-> W /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) ) |
6 | 5 | simpld | |- ( F e. ( G GraphIso H ) -> F : V -1-1-onto-> W ) |