Metamath Proof Explorer


Theorem grimf1o

Description: An isomorphism of graphs is a bijection between their vertices. (Contributed by AV, 29-Apr-2025)

Ref Expression
Hypotheses grimprop.v
|- V = ( Vtx ` G )
grimprop.w
|- W = ( Vtx ` H )
Assertion grimf1o
|- ( F e. ( G GraphIso H ) -> F : V -1-1-onto-> W )

Proof

Step Hyp Ref Expression
1 grimprop.v
 |-  V = ( Vtx ` G )
2 grimprop.w
 |-  W = ( Vtx ` H )
3 eqid
 |-  ( iEdg ` G ) = ( iEdg ` G )
4 eqid
 |-  ( iEdg ` H ) = ( iEdg ` H )
5 1 2 3 4 grimprop
 |-  ( F e. ( G GraphIso H ) -> ( F : V -1-1-onto-> W /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) )
6 5 simpld
 |-  ( F e. ( G GraphIso H ) -> F : V -1-1-onto-> W )