Metamath Proof Explorer


Theorem grimf1o

Description: An isomorphism of graphs is a bijection between their vertices. (Contributed by AV, 29-Apr-2025)

Ref Expression
Hypotheses grimprop.v V = Vtx G
grimprop.w W = Vtx H
Assertion grimf1o F G GraphIso H F : V 1-1 onto W

Proof

Step Hyp Ref Expression
1 grimprop.v V = Vtx G
2 grimprop.w W = Vtx H
3 eqid iEdg G = iEdg G
4 eqid iEdg H = iEdg H
5 1 2 3 4 grimprop F G GraphIso H F : V 1-1 onto W j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = F iEdg G i
6 5 simpld F G GraphIso H F : V 1-1 onto W