Metamath Proof Explorer


Theorem grimidvtxedg

Description: The identity relation restricted to the set of vertices of a graph is a graph isomorphism between the graph and a graph with the same vertices and edges. (Contributed by AV, 4-May-2025)

Ref Expression
Hypotheses grimidvtxsdg.g φ G UHGraph
grimidvtxsdg.h φ H V
grimidvtxsdg.v φ Vtx G = Vtx H
grimidvtxsdg.e φ iEdg G = iEdg H
Assertion grimidvtxedg φ I Vtx G G GraphIso H

Proof

Step Hyp Ref Expression
1 grimidvtxsdg.g φ G UHGraph
2 grimidvtxsdg.h φ H V
3 grimidvtxsdg.v φ Vtx G = Vtx H
4 grimidvtxsdg.e φ iEdg G = iEdg H
5 f1oi I Vtx G : Vtx G 1-1 onto Vtx G
6 3 f1oeq3d φ I Vtx G : Vtx G 1-1 onto Vtx G I Vtx G : Vtx G 1-1 onto Vtx H
7 5 6 mpbii φ I Vtx G : Vtx G 1-1 onto Vtx H
8 funi Fun I
9 fvex iEdg G V
10 9 dmex dom iEdg G V
11 resfunexg Fun I dom iEdg G V I dom iEdg G V
12 8 10 11 mp2an I dom iEdg G V
13 12 a1i φ I dom iEdg G V
14 f1oi I dom iEdg G : dom iEdg G 1-1 onto dom iEdg G
15 4 dmeqd φ dom iEdg G = dom iEdg H
16 15 f1oeq3d φ I dom iEdg G : dom iEdg G 1-1 onto dom iEdg G I dom iEdg G : dom iEdg G 1-1 onto dom iEdg H
17 14 16 mpbii φ I dom iEdg G : dom iEdg G 1-1 onto dom iEdg H
18 fvresi i dom iEdg G I dom iEdg G i = i
19 18 adantl φ i dom iEdg G I dom iEdg G i = i
20 19 fveq2d φ i dom iEdg G iEdg G I dom iEdg G i = iEdg G i
21 4 eqcomd φ iEdg H = iEdg G
22 21 fveq1d φ iEdg H I dom iEdg G i = iEdg G I dom iEdg G i
23 22 adantr φ i dom iEdg G iEdg H I dom iEdg G i = iEdg G I dom iEdg G i
24 eqid Vtx G = Vtx G
25 eqid iEdg G = iEdg G
26 24 25 uhgrss G UHGraph i dom iEdg G iEdg G i Vtx G
27 1 26 sylan φ i dom iEdg G iEdg G i Vtx G
28 resiima iEdg G i Vtx G I Vtx G iEdg G i = iEdg G i
29 27 28 syl φ i dom iEdg G I Vtx G iEdg G i = iEdg G i
30 20 23 29 3eqtr4d φ i dom iEdg G iEdg H I dom iEdg G i = I Vtx G iEdg G i
31 30 ralrimiva φ i dom iEdg G iEdg H I dom iEdg G i = I Vtx G iEdg G i
32 17 31 jca φ I dom iEdg G : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H I dom iEdg G i = I Vtx G iEdg G i
33 f1oeq1 j = I dom iEdg G j : dom iEdg G 1-1 onto dom iEdg H I dom iEdg G : dom iEdg G 1-1 onto dom iEdg H
34 fveq1 j = I dom iEdg G j i = I dom iEdg G i
35 34 fveqeq2d j = I dom iEdg G iEdg H j i = I Vtx G iEdg G i iEdg H I dom iEdg G i = I Vtx G iEdg G i
36 35 ralbidv j = I dom iEdg G i dom iEdg G iEdg H j i = I Vtx G iEdg G i i dom iEdg G iEdg H I dom iEdg G i = I Vtx G iEdg G i
37 33 36 anbi12d j = I dom iEdg G j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = I Vtx G iEdg G i I dom iEdg G : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H I dom iEdg G i = I Vtx G iEdg G i
38 13 32 37 spcedv φ j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = I Vtx G iEdg G i
39 fvex Vtx G V
40 resfunexg Fun I Vtx G V I Vtx G V
41 8 39 40 mp2an I Vtx G V
42 41 a1i φ I Vtx G V
43 eqid Vtx H = Vtx H
44 eqid iEdg H = iEdg H
45 24 43 25 44 isgrim G UHGraph H V I Vtx G V I Vtx G G GraphIso H I Vtx G : Vtx G 1-1 onto Vtx H j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = I Vtx G iEdg G i
46 1 2 42 45 syl3anc φ I Vtx G G GraphIso H I Vtx G : Vtx G 1-1 onto Vtx H j j : dom iEdg G 1-1 onto dom iEdg H i dom iEdg G iEdg H j i = I Vtx G iEdg G i
47 7 38 46 mpbir2and φ I Vtx G G GraphIso H