| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grimidvtxsdg.g |
|- ( ph -> G e. UHGraph ) |
| 2 |
|
grimidvtxsdg.h |
|- ( ph -> H e. V ) |
| 3 |
|
grimidvtxsdg.v |
|- ( ph -> ( Vtx ` G ) = ( Vtx ` H ) ) |
| 4 |
|
grimidvtxsdg.e |
|- ( ph -> ( iEdg ` G ) = ( iEdg ` H ) ) |
| 5 |
|
f1oi |
|- ( _I |` ( Vtx ` G ) ) : ( Vtx ` G ) -1-1-onto-> ( Vtx ` G ) |
| 6 |
3
|
f1oeq3d |
|- ( ph -> ( ( _I |` ( Vtx ` G ) ) : ( Vtx ` G ) -1-1-onto-> ( Vtx ` G ) <-> ( _I |` ( Vtx ` G ) ) : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) ) |
| 7 |
5 6
|
mpbii |
|- ( ph -> ( _I |` ( Vtx ` G ) ) : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) |
| 8 |
|
funi |
|- Fun _I |
| 9 |
|
fvex |
|- ( iEdg ` G ) e. _V |
| 10 |
9
|
dmex |
|- dom ( iEdg ` G ) e. _V |
| 11 |
|
resfunexg |
|- ( ( Fun _I /\ dom ( iEdg ` G ) e. _V ) -> ( _I |` dom ( iEdg ` G ) ) e. _V ) |
| 12 |
8 10 11
|
mp2an |
|- ( _I |` dom ( iEdg ` G ) ) e. _V |
| 13 |
12
|
a1i |
|- ( ph -> ( _I |` dom ( iEdg ` G ) ) e. _V ) |
| 14 |
|
f1oi |
|- ( _I |` dom ( iEdg ` G ) ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` G ) |
| 15 |
4
|
dmeqd |
|- ( ph -> dom ( iEdg ` G ) = dom ( iEdg ` H ) ) |
| 16 |
15
|
f1oeq3d |
|- ( ph -> ( ( _I |` dom ( iEdg ` G ) ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` G ) <-> ( _I |` dom ( iEdg ` G ) ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) ) |
| 17 |
14 16
|
mpbii |
|- ( ph -> ( _I |` dom ( iEdg ` G ) ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) |
| 18 |
|
fvresi |
|- ( i e. dom ( iEdg ` G ) -> ( ( _I |` dom ( iEdg ` G ) ) ` i ) = i ) |
| 19 |
18
|
adantl |
|- ( ( ph /\ i e. dom ( iEdg ` G ) ) -> ( ( _I |` dom ( iEdg ` G ) ) ` i ) = i ) |
| 20 |
19
|
fveq2d |
|- ( ( ph /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) = ( ( iEdg ` G ) ` i ) ) |
| 21 |
4
|
eqcomd |
|- ( ph -> ( iEdg ` H ) = ( iEdg ` G ) ) |
| 22 |
21
|
fveq1d |
|- ( ph -> ( ( iEdg ` H ) ` ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) = ( ( iEdg ` G ) ` ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` H ) ` ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) = ( ( iEdg ` G ) ` ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) ) |
| 24 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 25 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 26 |
24 25
|
uhgrss |
|- ( ( G e. UHGraph /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` i ) C_ ( Vtx ` G ) ) |
| 27 |
1 26
|
sylan |
|- ( ( ph /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` i ) C_ ( Vtx ` G ) ) |
| 28 |
|
resiima |
|- ( ( ( iEdg ` G ) ` i ) C_ ( Vtx ` G ) -> ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` G ) ` i ) ) |
| 29 |
27 28
|
syl |
|- ( ( ph /\ i e. dom ( iEdg ` G ) ) -> ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` G ) ` i ) ) |
| 30 |
20 23 29
|
3eqtr4d |
|- ( ( ph /\ i e. dom ( iEdg ` G ) ) -> ( ( iEdg ` H ) ` ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) ) |
| 31 |
30
|
ralrimiva |
|- ( ph -> A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) ) |
| 32 |
17 31
|
jca |
|- ( ph -> ( ( _I |` dom ( iEdg ` G ) ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) ) ) |
| 33 |
|
f1oeq1 |
|- ( j = ( _I |` dom ( iEdg ` G ) ) -> ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) <-> ( _I |` dom ( iEdg ` G ) ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) ) |
| 34 |
|
fveq1 |
|- ( j = ( _I |` dom ( iEdg ` G ) ) -> ( j ` i ) = ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) |
| 35 |
34
|
fveqeq2d |
|- ( j = ( _I |` dom ( iEdg ` G ) ) -> ( ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) <-> ( ( iEdg ` H ) ` ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) ) ) |
| 36 |
35
|
ralbidv |
|- ( j = ( _I |` dom ( iEdg ` G ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) <-> A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) ) ) |
| 37 |
33 36
|
anbi12d |
|- ( j = ( _I |` dom ( iEdg ` G ) ) -> ( ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) ) <-> ( ( _I |` dom ( iEdg ` G ) ) : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( ( _I |` dom ( iEdg ` G ) ) ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 38 |
13 32 37
|
spcedv |
|- ( ph -> E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) ) ) |
| 39 |
|
fvex |
|- ( Vtx ` G ) e. _V |
| 40 |
|
resfunexg |
|- ( ( Fun _I /\ ( Vtx ` G ) e. _V ) -> ( _I |` ( Vtx ` G ) ) e. _V ) |
| 41 |
8 39 40
|
mp2an |
|- ( _I |` ( Vtx ` G ) ) e. _V |
| 42 |
41
|
a1i |
|- ( ph -> ( _I |` ( Vtx ` G ) ) e. _V ) |
| 43 |
|
eqid |
|- ( Vtx ` H ) = ( Vtx ` H ) |
| 44 |
|
eqid |
|- ( iEdg ` H ) = ( iEdg ` H ) |
| 45 |
24 43 25 44
|
isgrim |
|- ( ( G e. UHGraph /\ H e. V /\ ( _I |` ( Vtx ` G ) ) e. _V ) -> ( ( _I |` ( Vtx ` G ) ) e. ( G GraphIso H ) <-> ( ( _I |` ( Vtx ` G ) ) : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) ) ) ) ) |
| 46 |
1 2 42 45
|
syl3anc |
|- ( ph -> ( ( _I |` ( Vtx ` G ) ) e. ( G GraphIso H ) <-> ( ( _I |` ( Vtx ` G ) ) : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ E. j ( j : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( j ` i ) ) = ( ( _I |` ( Vtx ` G ) ) " ( ( iEdg ` G ) ` i ) ) ) ) ) ) |
| 47 |
7 38 46
|
mpbir2and |
|- ( ph -> ( _I |` ( Vtx ` G ) ) e. ( G GraphIso H ) ) |