Step |
Hyp |
Ref |
Expression |
1 |
|
grimidvtxsdg.g |
⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) |
2 |
|
grimidvtxsdg.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝑉 ) |
3 |
|
grimidvtxsdg.v |
⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ) |
4 |
|
grimidvtxsdg.e |
⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) |
5 |
|
f1oi |
⊢ ( I ↾ ( Vtx ‘ 𝐺 ) ) : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) |
6 |
3
|
f1oeq3d |
⊢ ( 𝜑 → ( ( I ↾ ( Vtx ‘ 𝐺 ) ) : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐺 ) ↔ ( I ↾ ( Vtx ‘ 𝐺 ) ) : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) ) |
7 |
5 6
|
mpbii |
⊢ ( 𝜑 → ( I ↾ ( Vtx ‘ 𝐺 ) ) : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ) |
8 |
|
funi |
⊢ Fun I |
9 |
|
fvex |
⊢ ( iEdg ‘ 𝐺 ) ∈ V |
10 |
9
|
dmex |
⊢ dom ( iEdg ‘ 𝐺 ) ∈ V |
11 |
|
resfunexg |
⊢ ( ( Fun I ∧ dom ( iEdg ‘ 𝐺 ) ∈ V ) → ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ∈ V ) |
12 |
8 10 11
|
mp2an |
⊢ ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ∈ V |
13 |
12
|
a1i |
⊢ ( 𝜑 → ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ∈ V ) |
14 |
|
f1oi |
⊢ ( I ↾ dom ( iEdg ‘ 𝐺 ) ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐺 ) |
15 |
4
|
dmeqd |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐻 ) ) |
16 |
15
|
f1oeq3d |
⊢ ( 𝜑 → ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐺 ) ↔ ( I ↾ dom ( iEdg ‘ 𝐺 ) ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ) |
17 |
14 16
|
mpbii |
⊢ ( 𝜑 → ( I ↾ dom ( iEdg ‘ 𝐺 ) ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) |
18 |
|
fvresi |
⊢ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) → ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) = 𝑖 ) |
19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) = 𝑖 ) |
20 |
19
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
21 |
4
|
eqcomd |
⊢ ( 𝜑 → ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐺 ) ) |
22 |
21
|
fveq1d |
⊢ ( 𝜑 → ( ( iEdg ‘ 𝐻 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) ) |
24 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
25 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
26 |
24 25
|
uhgrss |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ ( Vtx ‘ 𝐺 ) ) |
27 |
1 26
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ ( Vtx ‘ 𝐺 ) ) |
28 |
|
resiima |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ ( Vtx ‘ 𝐺 ) → ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
29 |
27 28
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
30 |
20 23 29
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
31 |
30
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
32 |
17 31
|
jca |
⊢ ( 𝜑 → ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
33 |
|
f1oeq1 |
⊢ ( 𝑗 = ( I ↾ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ↔ ( I ↾ dom ( iEdg ‘ 𝐺 ) ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ) |
34 |
|
fveq1 |
⊢ ( 𝑗 = ( I ↾ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑗 ‘ 𝑖 ) = ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) |
35 |
34
|
fveqeq2d |
⊢ ( 𝑗 = ( I ↾ dom ( iEdg ‘ 𝐺 ) ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
36 |
35
|
ralbidv |
⊢ ( 𝑗 = ( I ↾ dom ( iEdg ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
37 |
33 36
|
anbi12d |
⊢ ( 𝑗 = ( I ↾ dom ( iEdg ‘ 𝐺 ) ) → ( ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ↔ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐺 ) ) ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
38 |
13 32 37
|
spcedv |
⊢ ( 𝜑 → ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) |
39 |
|
fvex |
⊢ ( Vtx ‘ 𝐺 ) ∈ V |
40 |
|
resfunexg |
⊢ ( ( Fun I ∧ ( Vtx ‘ 𝐺 ) ∈ V ) → ( I ↾ ( Vtx ‘ 𝐺 ) ) ∈ V ) |
41 |
8 39 40
|
mp2an |
⊢ ( I ↾ ( Vtx ‘ 𝐺 ) ) ∈ V |
42 |
41
|
a1i |
⊢ ( 𝜑 → ( I ↾ ( Vtx ‘ 𝐺 ) ) ∈ V ) |
43 |
|
eqid |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) |
44 |
|
eqid |
⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) |
45 |
24 43 25 44
|
isgrim |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ 𝑉 ∧ ( I ↾ ( Vtx ‘ 𝐺 ) ) ∈ V ) → ( ( I ↾ ( Vtx ‘ 𝐺 ) ) ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( ( I ↾ ( Vtx ‘ 𝐺 ) ) : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) ) |
46 |
1 2 42 45
|
syl3anc |
⊢ ( 𝜑 → ( ( I ↾ ( Vtx ‘ 𝐺 ) ) ∈ ( 𝐺 GraphIso 𝐻 ) ↔ ( ( I ↾ ( Vtx ‘ 𝐺 ) ) : ( Vtx ‘ 𝐺 ) –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐺 ) ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) ) |
47 |
7 38 46
|
mpbir2and |
⊢ ( 𝜑 → ( I ↾ ( Vtx ‘ 𝐺 ) ) ∈ ( 𝐺 GraphIso 𝐻 ) ) |