Description: Prove that two graphs are isomorphic by an explicit isomorphism. (Contributed by AV, 28-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brgrici | |- ( F e. ( R GraphIso S ) -> R ~=gr S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i | |- ( F e. ( R GraphIso S ) -> ( R GraphIso S ) =/= (/) ) |
|
| 2 | brgric | |- ( R ~=gr S <-> ( R GraphIso S ) =/= (/) ) |
|
| 3 | 1 2 | sylibr | |- ( F e. ( R GraphIso S ) -> R ~=gr S ) |