Metamath Proof Explorer


Theorem brgrici

Description: Prove that two graphs are isomorphic by an explicit isomorphism. (Contributed by AV, 28-Apr-2025)

Ref Expression
Assertion brgrici
|- ( F e. ( R GraphIso S ) -> R ~=gr S )

Proof

Step Hyp Ref Expression
1 ne0i
 |-  ( F e. ( R GraphIso S ) -> ( R GraphIso S ) =/= (/) )
2 brgric
 |-  ( R ~=gr S <-> ( R GraphIso S ) =/= (/) )
3 1 2 sylibr
 |-  ( F e. ( R GraphIso S ) -> R ~=gr S )