Step |
Hyp |
Ref |
Expression |
1 |
|
brgric |
|- ( G ~=gr S <-> ( G GraphIso S ) =/= (/) ) |
2 |
|
n0 |
|- ( ( G GraphIso S ) =/= (/) <-> E. f f e. ( G GraphIso S ) ) |
3 |
1 2
|
bitri |
|- ( G ~=gr S <-> E. f f e. ( G GraphIso S ) ) |
4 |
|
grimcnv |
|- ( G e. UHGraph -> ( f e. ( G GraphIso S ) -> `' f e. ( S GraphIso G ) ) ) |
5 |
|
brgrici |
|- ( `' f e. ( S GraphIso G ) -> S ~=gr G ) |
6 |
4 5
|
syl6 |
|- ( G e. UHGraph -> ( f e. ( G GraphIso S ) -> S ~=gr G ) ) |
7 |
6
|
exlimdv |
|- ( G e. UHGraph -> ( E. f f e. ( G GraphIso S ) -> S ~=gr G ) ) |
8 |
3 7
|
biimtrid |
|- ( G e. UHGraph -> ( G ~=gr S -> S ~=gr G ) ) |