| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brgric |
|- ( G ~=gr S <-> ( G GraphIso S ) =/= (/) ) |
| 2 |
|
n0 |
|- ( ( G GraphIso S ) =/= (/) <-> E. f f e. ( G GraphIso S ) ) |
| 3 |
1 2
|
bitri |
|- ( G ~=gr S <-> E. f f e. ( G GraphIso S ) ) |
| 4 |
|
grimcnv |
|- ( G e. UHGraph -> ( f e. ( G GraphIso S ) -> `' f e. ( S GraphIso G ) ) ) |
| 5 |
|
brgrici |
|- ( `' f e. ( S GraphIso G ) -> S ~=gr G ) |
| 6 |
4 5
|
syl6 |
|- ( G e. UHGraph -> ( f e. ( G GraphIso S ) -> S ~=gr G ) ) |
| 7 |
6
|
exlimdv |
|- ( G e. UHGraph -> ( E. f f e. ( G GraphIso S ) -> S ~=gr G ) ) |
| 8 |
3 7
|
biimtrid |
|- ( G e. UHGraph -> ( G ~=gr S -> S ~=gr G ) ) |