Description: Graph isomorphism is symmetric in both directions for hypergraphs. (Contributed by AV, 11-Nov-2022) (Proof shortened by AV, 3-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gricsymb | |- ( ( A e. UHGraph /\ B e. UHGraph ) -> ( A ~=gr B <-> B ~=gr A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gricsym | |- ( A e. UHGraph -> ( A ~=gr B -> B ~=gr A ) ) |
|
| 2 | gricsym | |- ( B e. UHGraph -> ( B ~=gr A -> A ~=gr B ) ) |
|
| 3 | 1 2 | anbiim | |- ( ( A e. UHGraph /\ B e. UHGraph ) -> ( A ~=gr B <-> B ~=gr A ) ) |