| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brgric |
|- ( R ~=gr S <-> ( R GraphIso S ) =/= (/) ) |
| 2 |
|
brgric |
|- ( S ~=gr T <-> ( S GraphIso T ) =/= (/) ) |
| 3 |
|
n0 |
|- ( ( R GraphIso S ) =/= (/) <-> E. g g e. ( R GraphIso S ) ) |
| 4 |
|
n0 |
|- ( ( S GraphIso T ) =/= (/) <-> E. f f e. ( S GraphIso T ) ) |
| 5 |
|
exdistrv |
|- ( E. g E. f ( g e. ( R GraphIso S ) /\ f e. ( S GraphIso T ) ) <-> ( E. g g e. ( R GraphIso S ) /\ E. f f e. ( S GraphIso T ) ) ) |
| 6 |
|
grimco |
|- ( ( f e. ( S GraphIso T ) /\ g e. ( R GraphIso S ) ) -> ( f o. g ) e. ( R GraphIso T ) ) |
| 7 |
6
|
ancoms |
|- ( ( g e. ( R GraphIso S ) /\ f e. ( S GraphIso T ) ) -> ( f o. g ) e. ( R GraphIso T ) ) |
| 8 |
|
brgrici |
|- ( ( f o. g ) e. ( R GraphIso T ) -> R ~=gr T ) |
| 9 |
7 8
|
syl |
|- ( ( g e. ( R GraphIso S ) /\ f e. ( S GraphIso T ) ) -> R ~=gr T ) |
| 10 |
9
|
exlimivv |
|- ( E. g E. f ( g e. ( R GraphIso S ) /\ f e. ( S GraphIso T ) ) -> R ~=gr T ) |
| 11 |
5 10
|
sylbir |
|- ( ( E. g g e. ( R GraphIso S ) /\ E. f f e. ( S GraphIso T ) ) -> R ~=gr T ) |
| 12 |
3 4 11
|
syl2anb |
|- ( ( ( R GraphIso S ) =/= (/) /\ ( S GraphIso T ) =/= (/) ) -> R ~=gr T ) |
| 13 |
1 2 12
|
syl2anb |
|- ( ( R ~=gr S /\ S ~=gr T ) -> R ~=gr T ) |