Metamath Proof Explorer


Theorem grictr

Description: Graph isomorphism is transitive. (Contributed by AV, 5-Dec-2022) (Revised by AV, 3-May-2025)

Ref Expression
Assertion grictr R 𝑔𝑟 S S 𝑔𝑟 T R 𝑔𝑟 T

Proof

Step Hyp Ref Expression
1 brgric R 𝑔𝑟 S R GraphIso S
2 brgric S 𝑔𝑟 T S GraphIso T
3 n0 R GraphIso S g g R GraphIso S
4 n0 S GraphIso T f f S GraphIso T
5 exdistrv g f g R GraphIso S f S GraphIso T g g R GraphIso S f f S GraphIso T
6 grimco f S GraphIso T g R GraphIso S f g R GraphIso T
7 6 ancoms g R GraphIso S f S GraphIso T f g R GraphIso T
8 brgrici f g R GraphIso T R 𝑔𝑟 T
9 7 8 syl g R GraphIso S f S GraphIso T R 𝑔𝑟 T
10 9 exlimivv g f g R GraphIso S f S GraphIso T R 𝑔𝑟 T
11 5 10 sylbir g g R GraphIso S f f S GraphIso T R 𝑔𝑟 T
12 3 4 11 syl2anb R GraphIso S S GraphIso T R 𝑔𝑟 T
13 1 2 12 syl2anb R 𝑔𝑟 S S 𝑔𝑟 T R 𝑔𝑟 T