Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
|
eqid |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
1 2 3 4
|
grimprop |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
6 1 7 3
|
grimprop |
|
9 |
|
f1oco |
|
10 |
9
|
ad2ant2r |
|
11 |
|
vex |
|
12 |
|
vex |
|
13 |
11 12
|
coex |
|
14 |
13
|
a1i |
|
15 |
|
f1oco |
|
16 |
15
|
a1d |
|
17 |
16
|
expcom |
|
18 |
17
|
impd |
|
19 |
18
|
adantr |
|
20 |
19
|
imp |
|
21 |
20
|
adantl |
|
22 |
|
2fveq3 |
|
23 |
|
fveq2 |
|
24 |
23
|
imaeq2d |
|
25 |
22 24
|
eqeq12d |
|
26 |
25
|
rspcv |
|
27 |
26
|
adantl |
|
28 |
27
|
adantr |
|
29 |
|
f1of |
|
30 |
29
|
adantl |
|
31 |
30
|
ffvelcdmda |
|
32 |
31
|
adantr |
|
33 |
|
2fveq3 |
|
34 |
|
fveq2 |
|
35 |
34
|
imaeq2d |
|
36 |
33 35
|
eqeq12d |
|
37 |
36
|
rspcv |
|
38 |
32 37
|
syl |
|
39 |
30
|
adantr |
|
40 |
39
|
adantr |
|
41 |
|
simpr |
|
42 |
41
|
adantr |
|
43 |
40 42
|
fvco3d |
|
44 |
43
|
adantr |
|
45 |
44
|
fveq2d |
|
46 |
|
simpr |
|
47 |
45 46
|
eqtrd |
|
48 |
47
|
ex |
|
49 |
38 48
|
syld |
|
50 |
49
|
impr |
|
51 |
|
imaeq2 |
|
52 |
|
imaco |
|
53 |
51 52
|
eqtr4di |
|
54 |
50 53
|
sylan9eq |
|
55 |
54
|
ex |
|
56 |
28 55
|
syld |
|
57 |
56
|
exp31 |
|
58 |
57
|
com24 |
|
59 |
58
|
expimpd |
|
60 |
59
|
imp32 |
|
61 |
60
|
ralrimiv |
|
62 |
21 61
|
jca |
|
63 |
|
f1oeq1 |
|
64 |
|
fveq1 |
|
65 |
64
|
fveqeq2d |
|
66 |
65
|
ralbidv |
|
67 |
63 66
|
anbi12d |
|
68 |
14 62 67
|
spcedv |
|
69 |
68
|
exp32 |
|
70 |
69
|
exlimdv |
|
71 |
70
|
expimpd |
|
72 |
71
|
com23 |
|
73 |
72
|
exlimdv |
|
74 |
73
|
imp31 |
|
75 |
10 74
|
jca |
|
76 |
5 8 75
|
syl2an |
|
77 |
|
grimdmrel |
|
78 |
77
|
ovrcl |
|
79 |
78
|
simpld |
|
80 |
79
|
adantl |
|
81 |
77
|
ovrcl |
|
82 |
81
|
simprd |
|
83 |
82
|
adantr |
|
84 |
|
coexg |
|
85 |
6 2 7 4
|
isgrim |
|
86 |
80 83 84 85
|
syl3anc |
|
87 |
76 86
|
mpbird |
|