Metamath Proof Explorer


Theorem grimco

Description: The composition of graph isomorphisms is a graph isomorphism. (Contributed by AV, 3-May-2025)

Ref Expression
Assertion grimco ( ( 𝐹 ∈ ( 𝑇 GraphIso 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GraphIso 𝑇 ) ) → ( 𝐹𝐺 ) ∈ ( 𝑆 GraphIso 𝑈 ) )

Proof

Step Hyp Ref Expression
1 eqid ( Vtx ‘ 𝑇 ) = ( Vtx ‘ 𝑇 )
2 eqid ( Vtx ‘ 𝑈 ) = ( Vtx ‘ 𝑈 )
3 eqid ( iEdg ‘ 𝑇 ) = ( iEdg ‘ 𝑇 )
4 eqid ( iEdg ‘ 𝑈 ) = ( iEdg ‘ 𝑈 )
5 1 2 3 4 grimprop ( 𝐹 ∈ ( 𝑇 GraphIso 𝑈 ) → ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ ∃ 𝑓 ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) )
6 eqid ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 )
7 eqid ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 )
8 6 1 7 3 grimprop ( 𝐺 ∈ ( 𝑆 GraphIso 𝑇 ) → ( 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) )
9 f1oco ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) → ( 𝐹𝐺 ) : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) )
10 9 ad2ant2r ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ ∃ 𝑓 ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ∧ ( 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) ) → ( 𝐹𝐺 ) : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) )
11 vex 𝑓 ∈ V
12 vex 𝑔 ∈ V
13 11 12 coex ( 𝑓𝑔 ) ∈ V
14 13 a1i ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ) → ( 𝑓𝑔 ) ∈ V )
15 f1oco ( ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) → ( 𝑓𝑔 ) : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) )
16 15 a1d ( ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) → ( ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) → ( 𝑓𝑔 ) : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) )
17 16 expcom ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) → ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) → ( ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) → ( 𝑓𝑔 ) : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) ) )
18 17 impd ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) → ( ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) → ( 𝑓𝑔 ) : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) )
19 18 adantr ( ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) → ( ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) → ( 𝑓𝑔 ) : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) )
20 19 imp ( ( ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) → ( 𝑓𝑔 ) : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) )
21 20 adantl ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ) → ( 𝑓𝑔 ) : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) )
22 2fveq3 ( 𝑦 = 𝑖 → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) )
23 fveq2 ( 𝑦 = 𝑖 → ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) = ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) )
24 23 imaeq2d ( 𝑦 = 𝑖 → ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) )
25 22 24 eqeq12d ( 𝑦 = 𝑖 → ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ↔ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) )
26 25 rspcv ( 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) → ( ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) )
27 26 adantl ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) )
28 27 adantr ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) → ( ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) )
29 f1of ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) → 𝑔 : dom ( iEdg ‘ 𝑆 ) ⟶ dom ( iEdg ‘ 𝑇 ) )
30 29 adantl ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) → 𝑔 : dom ( iEdg ‘ 𝑆 ) ⟶ dom ( iEdg ‘ 𝑇 ) )
31 30 ffvelcdmda ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝑔𝑖 ) ∈ dom ( iEdg ‘ 𝑇 ) )
32 31 adantr ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) → ( 𝑔𝑖 ) ∈ dom ( iEdg ‘ 𝑇 ) )
33 2fveq3 ( 𝑥 = ( 𝑔𝑖 ) → ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ ( 𝑔𝑖 ) ) ) )
34 fveq2 ( 𝑥 = ( 𝑔𝑖 ) → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) )
35 34 imaeq2d ( 𝑥 = ( 𝑔𝑖 ) → ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) ) )
36 33 35 eqeq12d ( 𝑥 = ( 𝑔𝑖 ) → ( ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ↔ ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) ) ) )
37 36 rspcv ( ( 𝑔𝑖 ) ∈ dom ( iEdg ‘ 𝑇 ) → ( ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) ) ) )
38 32 37 syl ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) → ( ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) ) ) )
39 30 adantr ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑔 : dom ( iEdg ‘ 𝑆 ) ⟶ dom ( iEdg ‘ 𝑇 ) )
40 39 adantr ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) → 𝑔 : dom ( iEdg ‘ 𝑆 ) ⟶ dom ( iEdg ‘ 𝑇 ) )
41 simpr ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) )
42 41 adantr ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) → 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) )
43 40 42 fvco3d ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) → ( ( 𝑓𝑔 ) ‘ 𝑖 ) = ( 𝑓 ‘ ( 𝑔𝑖 ) ) )
44 43 adantr ( ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) ) ) → ( ( 𝑓𝑔 ) ‘ 𝑖 ) = ( 𝑓 ‘ ( 𝑔𝑖 ) ) )
45 44 fveq2d ( ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓𝑔 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ ( 𝑔𝑖 ) ) ) )
46 simpr ( ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) ) )
47 45 46 eqtrd ( ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) ∧ ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓𝑔 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) ) )
48 47 ex ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) → ( ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓 ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓𝑔 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) ) ) )
49 38 48 syld ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) → ( ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓𝑔 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) ) ) )
50 49 impr ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓𝑔 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) ) )
51 imaeq2 ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) ) = ( 𝐹 “ ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) )
52 imaco ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) )
53 51 52 eqtr4di ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) )
54 50 53 sylan9eq ( ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ∧ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) )
55 54 ex ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) → ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑖 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) )
56 28 55 syld ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) → ( ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) )
57 56 exp31 ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) → ( 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) → ( ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) )
58 57 com24 ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ) → ( ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) → ( ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) → ( 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) )
59 58 expimpd ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) → ( ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) → ( ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) → ( 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) )
60 59 imp32 ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ) → ( 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) )
61 60 ralrimiv ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ) → ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) )
62 21 61 jca ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ) → ( ( 𝑓𝑔 ) : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) )
63 f1oeq1 ( 𝑗 = ( 𝑓𝑔 ) → ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ↔ ( 𝑓𝑔 ) : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ) )
64 fveq1 ( 𝑗 = ( 𝑓𝑔 ) → ( 𝑗𝑖 ) = ( ( 𝑓𝑔 ) ‘ 𝑖 ) )
65 64 fveqeq2d ( 𝑗 = ( 𝑓𝑔 ) → ( ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) )
66 65 ralbidv ( 𝑗 = ( 𝑓𝑔 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) )
67 63 66 anbi12d ( 𝑗 = ( 𝑓𝑔 ) → ( ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ↔ ( ( 𝑓𝑔 ) : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( ( 𝑓𝑔 ) ‘ 𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) )
68 14 62 67 spcedv ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) ∧ ( ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ∧ ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ) → ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) )
69 68 exp32 ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) → ( ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) → ( ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) → ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) )
70 69 exlimdv ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ) → ( ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) → ( ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) → ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) )
71 70 expimpd ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) → ( ( 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) → ( ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) → ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) )
72 71 com23 ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) → ( ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) → ( ( 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) → ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) )
73 72 exlimdv ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) → ( ∃ 𝑓 ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) → ( ( 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) → ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) )
74 73 imp31 ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ ∃ 𝑓 ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ∧ ( 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) ) → ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) )
75 10 74 jca ( ( ( 𝐹 : ( Vtx ‘ 𝑇 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ ∃ 𝑓 ( 𝑓 : dom ( iEdg ‘ 𝑇 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑓𝑥 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) ) ) ∧ ( 𝐺 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑔𝑦 ) ) = ( 𝐺 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) ) → ( ( 𝐹𝐺 ) : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) )
76 5 8 75 syl2an ( ( 𝐹 ∈ ( 𝑇 GraphIso 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GraphIso 𝑇 ) ) → ( ( 𝐹𝐺 ) : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) )
77 grimdmrel Rel dom GraphIso
78 77 ovrcl ( 𝐺 ∈ ( 𝑆 GraphIso 𝑇 ) → ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) )
79 78 simpld ( 𝐺 ∈ ( 𝑆 GraphIso 𝑇 ) → 𝑆 ∈ V )
80 79 adantl ( ( 𝐹 ∈ ( 𝑇 GraphIso 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GraphIso 𝑇 ) ) → 𝑆 ∈ V )
81 77 ovrcl ( 𝐹 ∈ ( 𝑇 GraphIso 𝑈 ) → ( 𝑇 ∈ V ∧ 𝑈 ∈ V ) )
82 81 simprd ( 𝐹 ∈ ( 𝑇 GraphIso 𝑈 ) → 𝑈 ∈ V )
83 82 adantr ( ( 𝐹 ∈ ( 𝑇 GraphIso 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GraphIso 𝑇 ) ) → 𝑈 ∈ V )
84 coexg ( ( 𝐹 ∈ ( 𝑇 GraphIso 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GraphIso 𝑇 ) ) → ( 𝐹𝐺 ) ∈ V )
85 6 2 7 4 isgrim ( ( 𝑆 ∈ V ∧ 𝑈 ∈ V ∧ ( 𝐹𝐺 ) ∈ V ) → ( ( 𝐹𝐺 ) ∈ ( 𝑆 GraphIso 𝑈 ) ↔ ( ( 𝐹𝐺 ) : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) )
86 80 83 84 85 syl3anc ( ( 𝐹 ∈ ( 𝑇 GraphIso 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GraphIso 𝑇 ) ) → ( ( 𝐹𝐺 ) ∈ ( 𝑆 GraphIso 𝑈 ) ↔ ( ( 𝐹𝐺 ) : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑈 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑈 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑈 ) ‘ ( 𝑗𝑖 ) ) = ( ( 𝐹𝐺 ) “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) )
87 76 86 mpbird ( ( 𝐹 ∈ ( 𝑇 GraphIso 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GraphIso 𝑇 ) ) → ( 𝐹𝐺 ) ∈ ( 𝑆 GraphIso 𝑈 ) )