Description: Isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 3-May-2025) (Proof shortened by AV, 11-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gricer | |- ( ~=gr i^i ( UHGraph X. UHGraph ) ) Er UHGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gricref | |- ( g e. UHGraph -> g ~=gr g ) |
|
| 2 | gricsym | |- ( g e. UHGraph -> ( g ~=gr h -> h ~=gr g ) ) |
|
| 3 | grictr | |- ( ( g ~=gr h /\ h ~=gr k ) -> g ~=gr k ) |
|
| 4 | 3 | a1i | |- ( g e. UHGraph -> ( ( g ~=gr h /\ h ~=gr k ) -> g ~=gr k ) ) |
| 5 | 1 2 4 | brinxper | |- ( ~=gr i^i ( UHGraph X. UHGraph ) ) Er UHGraph |