Description: Graph isomorphism is reflexive for hypergraphs. (Contributed by AV, 11-Nov-2022) (Revised by AV, 29-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | gricref | |- ( G e. UHGraph -> G ~=gr G ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grimid | |- ( G e. UHGraph -> ( _I |` ( Vtx ` G ) ) e. ( G GraphIso G ) ) |
|
2 | brgrici | |- ( ( _I |` ( Vtx ` G ) ) e. ( G GraphIso G ) -> G ~=gr G ) |
|
3 | 1 2 | syl | |- ( G e. UHGraph -> G ~=gr G ) |