Description: Graph isomorphism is reflexive for hypergraphs. (Contributed by AV, 11-Nov-2022) (Revised by AV, 29-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gricref | |- ( G e. UHGraph -> G ~=gr G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grimid | |- ( G e. UHGraph -> ( _I |` ( Vtx ` G ) ) e. ( G GraphIso G ) ) |
|
| 2 | brgrici | |- ( ( _I |` ( Vtx ` G ) ) e. ( G GraphIso G ) -> G ~=gr G ) |
|
| 3 | 1 2 | syl | |- ( G e. UHGraph -> G ~=gr G ) |